首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

2.
Ryanodine receptor types 1 (RyR1) and 2 (RyR2) are calcium release channels that are highly enriched in skeletal and cardiac muscle, respectively, where they play an essential role in excitation-contraction coupling. Apocalmodulin (apo-CaM) weakly activates RyR1 but inhibits RyR2, whereas Ca(2+)-calmodulin inhibits both isoforms. Previous cryo-EM studies showed distinctly different binding locations on RyR1 for the two states of CaM. However, recent studies employing FRET appear to challenge these findings. Here, using cryo-EM, we have determined that a CaM mutant that is incapable of binding calcium binds to RyR1 at the apo site, regardless of the calcium concentration. We have also re-determined the location of RyR1-bound Ca(2+)-CaM using uniform experimental conditions. Our results show the existence of the two overlapping but distinct binding sites for CaM in RyR1 and imply that the binding location switch is due to Ca(2+) binding to CaM, as opposed to direct effects of Ca(2+) on RyR1. We also discuss explanations that could resolve the apparent conflict between the cryo-EM and FRET results. Interestingly, apo-CaM binds to RyR2 at a similar binding location to that of Ca(2+)-CaM on RyR1, in seeming agreement with the inhibitory effects of these two forms of CaM on their respective receptors.  相似文献   

3.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   

4.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   

5.
Calmodulin (CaM) binds to the skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1) with high affinity, and it may act as a Ca(2+)-sensing subunit of the channel. Apo-CaM increases RyR1 channel activity, but Ca(2+)-CaM is inhibitory. Here we examine the functional effects of CaM oxidation on RyR1 regulation by both apo-CaM and Ca(2+)-CaM, as assessed via determinations of [(3)H]ryanodine and [(35)S]CaM binding to skeletal muscle sarcoplasmic reticulum vesicles. Oxidation of all nine CaM Met residues abolished functional interactions of CaM with RyR1. Incomplete CaM oxidation, affecting 5-8 Met residues, increased the CaM concentration required to modulate RyR1, having a greater effect on the apo-CaM species. Mutating individual CaM Met residues to Gln demonstrated that Met-109 was required for apo-CaM activation of RyR1 but not for Ca(2+)-CaM inhibition of the channel. Furthermore, substitution of Gln for Met-124 increased the apo- and Ca(2+)-CaM concentrations required to regulate RyR1. These results thus identify Met residues critical for the productive association of CaM with RyR1 channels and suggest that oxidation of CaM may contribute to altered regulation of sarcoplasmic reticulum Ca(2+) release during oxidative stress.  相似文献   

6.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function.  相似文献   

7.
The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.  相似文献   

8.
In resting muscle, cytoplasmic Mg(2+) is a potent inhibitor of Ca(2+) release from the sarcoplasmic reticulum (SR). It is thought to inhibit calcium release channels (RyRs) by binding both to low affinity, low specificity sites (I-sites) and to high affinity Ca(2+) sites (A-sites) thus preventing Ca(2+) activation. We investigate the effects of luminal and cytoplasmic Ca(2+) on Mg(2+) inhibition at the A-sites of skeletal RyRs (RyR1) in lipid bilayers, in the presence of ATP or modified by ryanodine or DIDS. Mg(2+) inhibits RyRs at the A-site in the absence of Ca(2+), indicating that Mg(2+) is an antagonist and does not simply prevent Ca(2+) activation. Cytoplasmic Ca(2+) and Cs(+) decreased Mg(2+) affinity by a competitive mechanism. We describe a novel mechanism for luminal Ca(2+) regulation of Ca(2+) release whereby increasing luminal [Ca(2+)] decreases the A-site affinity for cytoplasmic Mg(2+) by a noncompetitive, allosteric mechanism that is independent of Ca(2+) flow. Ryanodine increases the Ca(2+) sensitivity of the A-sites by 10-fold, which is insufficient to explain the level of activation seen in ryanodine-modified RyRs at nM Ca(2+), indicating that ryanodine activates independently of Ca(2+). We describe a model for ion binding at the A-sites that predicts that modulation of Mg(2+) inhibition by luminal Ca(2+) is a significant regulator of Ca(2+) release from the SR. We detected coupled gating of RyRs due to luminal Ca(2+) permeating one channel and activating neighboring channels. This indicated that the RyRs existed in stable close-packed rafts within the bilayer. We found that luminal Ca(2+) and cytoplasmic Mg(2+) did not compete at the A-sites of single open RyRs but did compete during multiple channel openings in rafts. Also, luminal Ca(2+) was a stronger activator of multiple openings than single openings. Thus it appears that RyRs are effectively "immune" to Ca(2+) emanating from their own pore but sensitive to Ca(2+) from neighboring channels.  相似文献   

9.
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.  相似文献   

10.
Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.  相似文献   

11.
Molecular genetics of ryanodine receptors Ca2+-release channels   总被引:7,自引:0,他引:7  
Rossi D  Sorrentino V 《Cell calcium》2002,32(5-6):307-319
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.  相似文献   

12.
Previous studies proposed that N-ethylmaleimide (NEM) alkylates 3 classes of thiols on skeletal muscle ryanodine receptors (RyRs) producing 3 phases of channel modification, as function of time and concentration. NEM (5 mm) decreased, increased, and then decreased the open probability (P(o)) of the channel by thiol alkylation, a reaction not reversed by reducing agents. We now show that low NEM concentrations (20-200 microm) elicit Ca(2+) release from sarcoplasmic reticulum (SR) vesicles, but contrary to expectations, the effect was fully reversed by reducing agents or by washing SR vesicles. In bilayers, NEM (0.2 mm) increased P(o) of RyRs within seconds when added to the cis (not trans) side, and dithiothreitol (DTT; 1 mm) decreased P(o) in seconds. High (5 mm) NEM concentrations elicited SR Ca(2+) release that was not reversed by DTT, as expected for an alkylation reaction. A non-sulfhydryl reagent structurally related to NEM, N-ethylsuccinimide (0.1-0.5 mm), also elicited SR Ca(2+) release that was not reversed by DTT (1 mm). Other alkylating agents elicited SR Ca(2+) release, which was fully (N-methylmaleimide) or partially (iodoacetic acid) reversed by DTT and inhibited by ruthenium red. Nitric oxide (NO) donors at concentrations that did not activate RyRs inhibited NEM-induced Ca(2+) release, most likely by an interaction of NO with NEM rather than an inactivation of RyRs by NO. Thus, at low concentrations, NEM does not act as a selective thiol reagent and activates RyRs without alkylating critical thiols indicating that the multiple phases of ryanodine binding are unrelated to RyR activity or to NEM alkylation of RyRs.  相似文献   

13.
Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors.  相似文献   

14.
The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.  相似文献   

15.
Calmodulin is a ubiquitous Ca(2+) binding protein that modulates the in vitro activity of the skeletal muscle ryanodine receptor (RyR1). Residues 3614-3643 of RyR1 comprise the CaM binding domain and mutations within this region result in a loss of both high-affinity Ca(2+)-bound calmodulin (CaCaM) and Ca(2+)-free CaM (apoCaM) binding (L3624D) or only CaCaM binding (W3620A). To investigate the functional role of CaM binding to this region of RyR1 in intact skeletal muscle, we compared the ability of RyR1, L3624D, and W3620A to restore excitation-contraction (EC) coupling after expression in RyR1-deficient (dyspedic) myotubes. W3620A-expressing cells responded normally to 10 mM caffeine and 500 microM 4-chloro-m-cresol (4-cmc). Interestingly, L3624D-expressing cells displayed a bimodal response to caffeine, with a large proportion of cells ( approximately 44%) showing a greatly attenuated response to caffeine. However, high and low caffeine-responsive L3624D-expressing myotubes exhibited Ca(2+) transients of similar magnitude after activation by 4-cmc (500 microM) and electrical stimulation. Expression of either L3624D or W3620A in dyspedic myotubes restored both L-type Ca(2+) currents (retrograde coupling) and voltage-gated SR Ca(2+) release (orthograde coupling) to a similar degree as that observed for wild-type RyR1, although L-current density was somewhat larger and activated at more hyperpolarized potentials in W3620A-expressing myotubes. The results indicate that CaM binding to the 3614-3643 region of RyR1 is not essential for voltage sensor activation of RyR1.  相似文献   

16.
Activation of Ca2+ release channels/ryanodine receptors (RyR) by the inward Ca2+ current (I(Ca)) gives rise to Ca(2+)-induced Ca2+ release (CICR), the amplifying Ca2+ signaling mechanism that triggers contraction of the heart. CICR, in theory, is a high-gain, self-regenerating process, but an unidentified mechanism stabilizes it in vivo. Sorcin, a 21.6 kDa Ca(2+)-binding protein, binds to cardiac RyRs with high affinity and completely inhibits channel activity. Sorcin significantly inhibits both the spontaneous activity of RyRs in quiescent cells (visualized as Ca2+ sparks) and the I(Ca)-triggered activity of RyRs that gives rise to [Ca2+]i transients. Since sorcin decreases the amplitude of the [Ca2+]i transient without affecting the amplitude of I(Ca), the overall effect of sorcin is to reduce the "gain" of excitation-contraction coupling. Immunocytochemical staining shows that sorcin localizes to the dyadic space of ventricular cardiac myocytes. Ca2+ induces conformational changes and promotes translocation of sorcin between soluble and membranous compartments, but the [Ca2+] required for the latter process (ED50 = approximately 200 microM) appears to be reached only within the dyadic space. Thus, sorcin is a potent inhibitor of both spontaneous and I(Ca)-triggered RyR activity and may play a role in helping terminate the positive feedback loop of CICR.  相似文献   

17.
The sarcoplasmic reticulum (SR) Ca(2+) release channel (RyR1) from malignant hyperthermia-susceptible (MHS) porcine skeletal muscle has a decreased sensitivity to inhibition by Mg(2+). This diminished Mg(2+) inhibition has been attributed to a lower Mg(2+) affinity of the inhibition (I) site. To determine whether alterations in the Ca(2+) and Mg(2+) affinity of the activation (A) site contribute to the altered Mg(2+) inhibition, we estimated the Ca(2+) and Mg(2+) affinities of the A- and I-sites of normal and MHS RyR1. Compared with normal SR, MHS SR required less Ca(2+) to half-maximally activate [(3)H]ryanodine binding (K(A,Ca): MHS = 0.17 +/- 0.01 microM; normal = 0.29 +/- 0.02 microM) and more Ca(2+) to half-maximally inhibit ryanodine binding (K(I,Ca): MHS = 519.3 +/- 48.7 microM; normal = 293.3 +/- 24.2 microM). The apparent Mg(2+) affinity constants of the MHS RyR1 A- and I-sites were approximately twice those of the A- and I-sites of the normal RyR1 (K(A,Mg): MHS = 44.36 +/- 4.54 microM; normal = 21.59 +/- 1.66 microM; K(I,Mg): MHS = 660.8 +/- 53.0 microM; normal = 299.2 +/- 24.5 microM). Thus, the reduced Mg(2+) inhibition of the MHS RyR1 compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca(2+) over Mg(2+) and a reduced Mg(2+) affinity of the I-site.  相似文献   

18.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

19.
The cellular and molecular processes underlying the regulation of ryanodine receptor (RyR) Ca(2+) release in smooth muscle cells (SMCs) are incompletely understood. Here we show that FKBP12.6 proteins are expressed in pulmonary artery (PA) smooth muscle and associated with type-2 RyRs (RyR2), but not RyR1, RyR3, or IP(3) receptors (IP(3)Rs) in PA sarcoplasmic reticulum. Application of FK506, which binds to FKBPs and dissociates these proteins from RyRs, induced an increase in [Ca(2+)](i) and Ca(2+)-activated Cl(-) and K(+) currents in freshly isolated PASMCs, whereas cyclosporin, an agent known to inhibit calcineurin but not to interact with FKBPs, failed to induce an increase in [Ca(2+)](i). FK506-induced [Ca(2+)](i) increase was completely blocked by the RyR antagonist ruthenium red and ryanodine, but not the IP(3)R antagonist heparin. Hypoxic Ca(2+) response and hypoxic vasoconstriction were significantly enhanced in FKBP12.6 knockout mouse PASMCs. FK506 or rapamycin pretreatment also enhanced hypoxic increase [Ca(2+)](i), but did not alter caffeine-induced Ca(2+) release (SR Ca(2+) content) in PASMCs. Norepinephrine-induced Ca(2+) release and force generation were also markedly enhanced in PASMCs from FKBP12.6 null mice. These findings suggest that FKBP12.6 plays an important role in hypoxia- and neurotransmitter-induced Ca(2+) and contractile responses by regulating the activity of RyRs in PASMCs.  相似文献   

20.
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号