首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single molecule analysis of DNA replication   总被引:4,自引:0,他引:4  
Herrick J  Bensimon A 《Biochimie》1999,81(8-9):859-871
We describe here a novel approach for the study of DNA replication. The approach is based on a process called molecular combing and allows for the genome wide analysis of the spatial and temporal organization of replication units and replication origins in a sample of genomic DNA. Molecular combing is a process whereby molecules of DNA are stretched and aligned on a glass surface by the force exerted by a receding air/water interface. Since the stretching occurs in the immediate vicinity of the meniscus, all molecules are identically stretched in a size and sequence independent manner. The application of fluorescence hybridization to combed DNA results in a high resolution (1 to 4 kb) optical mapping that is simple, controlled and reproducible. The ability to comb up to several hundred haploid genomes on a single coverslip allows for a statistically significant number of measurements to be made. Direct labeling of replicating DNA sequences in turn enables origins of DNA replication to be visualized and mapped. These features therefore make molecular combing an attractive tool for genomic studies of DNA replication. In the following, we discuss the application of molecular combing to the study of DNA replication and genome stability.  相似文献   

2.
Regulated replication of DNA microinjected into eggs of Xenopus laevis   总被引:39,自引:0,他引:39  
R M Harland  R A Laskey 《Cell》1980,21(3):761-771
Purified circular DNA of SV40 or polyoma virus has been injected into unfertilized eggs of Xenopus laevis. Injected DNA initiates and completes multiple rounds of semiconservative replication while observing cellular regulatory signals. Thus replication initiation of double-stranded templates is induced after the oocyte is matured in vitro by progesterone. Only one round of replication of injected DNA is observed in a single cell cycle. When protein synthesis is inhibited unreplicated molecules continue to initiate replication at an undiminished rate, but reinitiation on previously replicated molecules is completely and selectively abolished. The DNA sequence requirements for the replication of injected DNA have been investigated. A variety of procaryotic DNA molecules and circularized fragments of SV40 or polyoma DNA replicate, regardless of whether they contain the viral origin of DNA replication. These results suggest that a specialized DNA sequence is not essential for the initiation of semiconservative DNA replication in the Xenopus embryo, nor is a specialized sequence essential for the mechanism which prevents reinitiation on a molecule which has already replicated within a cell cycle. The possibility is discussed that viral origins of replication are not valid models for the eucaryotic chromosome but are adaptations for uncoupling viral replication from the mechanism which prevents reinitiation within a cell cycle.  相似文献   

3.
John A. Bryant 《Plant biosystems》2013,147(4-6):855-863
Abstract

The initiation of DNA replication is a key step in the cell division cycle and in DNA endoreduplication. Initiation of replication takes place at specific places in chromosomes known as replication origins. These are subject to temporal regulation within the cell cycle and may also be regulated as a function of plant development. In yeast, replication origins are recognised and bound by three different groups of proteins at different stages of the cell cycle. Of these, the MCM proteins are the most likely to be involved in activating the origins in order to facilitate initiation. MCM-like proteins also occur in plants, but have not been characterised in detail. Other proteins which bind to origins have been identified, as has a protein with a strong affinity for ds-ss junctions in DNA molecules.  相似文献   

4.
DNA replication occurs at discrete sites in the cell. To gain insight into the spatial and temporal organization of the Bacillus subtilis replication cycle, we simultaneously visualized replication origins and the replication machinery (replisomes) inside live cells. We found that the origin of replication is positioned near midcell prior to replication. After initiation, the replisome colocalizes with the origin, confirming that replication initiates near midcell. The replisome remains near midcell after duplicated origins separate. Artificially mispositioning the origin region leads to mislocalization of the replisome indicating that the location of the origin at the time of initiation establishes the position of the replisome. Time-lapse microscopy revealed that a single replisome focus reversibly splits into two closely spaced foci every few seconds in many cells, including cells that recently initiated replication. Thus, sister replication forks are likely not intimately associated with each other throughout the replication cycle. Fork dynamics persisted when replication elongation was halted, and is thus independent of the relative movement of DNA through the replisome. Our results provide new insights into how the replisome is positioned in the cell and refine our current understanding of the spatial and temporal events of the B. subtilis replication cycle.  相似文献   

5.
The spatial organization of replicons into clusters is believed to be of critical importance for genome duplication in higher eukaryotes, but its functional organization still remains to be fully clarified. The coordinated activation of origins is insufficient on its own to account for a timely completion of genome duplication when interorigin distances vary significantly and fork velocities are constant. Mechanisms coordinating origin distribution with fork progression are still poorly elucidated, because of technical difficulties of visualizing the process. Taking advantage of a single molecule approach, we delineated and compared the DNA replication kinetics at the genome level in human normal primary and malignant cells. Our results show that replication forks moving from one origin, as well as from neighboring origins, tend to exhibit the same velocity, although the plasticity of the replication program allows for their adaptation to variable interorigin distances. We also found that forks that emanated from closely spaced origins tended to move slower than those associated with long replicons. Taken together, our results indicate a functional role for origin clustering in the dynamic regulation of genome duplication.  相似文献   

6.
Eukaryotic chromosome replication is initiated from numerous origins and its activation is temporally controlled by cell cycle and checkpoint mechanisms. Yeast has been very useful in defining the genetic elements required for initiation of DNA replication, but simple and precise tools to monitor S phase progression are lacking in this model organism. Here we describe a TK(+) yeast strain and conditions that allow incorporation of exogenous BrdU into genomic DNA, along with protocols to detect the sites of DNA synthesis in yeast nuclei or on combed DNA molecules. S phase progression is monitored by quantification of BrdU in total yeast DNA or on individual chromosomes. Using these tools we show that yeast chromosomes replicate synchronously and that DNA synthesis occurs at discrete subnuclear foci. Analysis of BrdU signals along single DNA molecules from hydroxyurea-arrested cells reveals that replication forks stall 8-9 kb from origins that are placed 46 kb apart on average. Quantification of total BrdU incorporation suggests that 190 'early' origins have fired in these cells and that late replicating territories might represent up to 40% of the yeast genome. More generally, the methods outlined here will help understand the kinetics of DNA replication in wild-type yeast and refine the phenotypes of several mutants.  相似文献   

7.
The cell-division cycle has to be regulated in both time and space. In the time dimension, the cell ensures that mitosis does not begin until DNA replication is completed and any damaged DNA is repaired, and that DNA replication normally follows mitosis. This is achieved by the synthesis and destruction of specific cell-cycle regulators at the right time in the cell cycle. In the spatial dimension, the cell coordinates dramatic reorganizations of the subcellular architecture at the entrance to and exit from mitosis, largely through the actions of protein kinases and phosphatases that are often localized to specific subcellular structures. Evidence is now accumulating to suggest that the spatial organization of cell-cycle regulators is also important in the temporal control of the cell cycle. Here I will focus on how the locations of the main components of the cell-cycle machinery are regulated as part of the mechanism by which the cell controls when and how it replicates and divides.  相似文献   

8.
9.
10.
DNA replication origins fire stochastically in fission yeast   总被引:10,自引:0,他引:10       下载免费PDF全文
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.  相似文献   

11.
Transmission electron microscopic techniques were used to study the spatial distribution of replicons and the ultrastructure of chromatin in the S phase genome of cellular blastoderm Drosophila melanogaster embryos. We observed chromatin exhibiting distinct bifurcations along each fiber during the initial 20 min of the first cell cycle of blastulation. We interpreted the “bubble-like” configurations produced by adjacent bifurcations as intermediate structures in chromatin replication (that is, replicons). We observed homologous ribonucleoprotein (RNP) fiber arrays on both chromatid arms within some replicons, implying DNA sequence homology and reinforcing the identification of such arms as daughter chromatid fibers. We did not observe replicon configurations on chromatin obtained from embryos staged at more than 20 min into cellular blastulation. Daughter chromatid fibers, however, were identified by the presence of identical RNP fiber arrays on chromatid strands arranged in parallel on the electron microscope grid.We examined the distribution of replicon structures on the cellular blastoderm genome and compared it with electron microscopic data on DNA replication in cleavage embryos (Blumenthal, Kriegstein and Hogness, 1973). S phase is completed in slightly < 4 min during cleavage, or approximately one fifth the time required for DNA synthesis in cellular blastoderm embryos. The mean distance separating adjacent replication origins at cellularization was estimated to be 10.6 kilobases (kb), a value 35% greater than the 7.9 kb inter-origin average determined for cleavage embryos. In contrast to the near-simultaneous activation of replication origins during cleavage replication, we observed that replication origins are not activated synchronously at cellular blastulation. We concluded that the marked increase in the duration of S phase is effected by a reduction in the frequency of replication activation events which occur asynchronously during genome replication at cellularization.We found that the ultrastructure of newly replicated chromatin exhibited a morphology indistinguishable from nucleosomal chromatin. Unreplicated chromatin fibers separating adjacent replicons also exhibit spherical subunits. We inferred that the spherical structures on replicating chromatin are nucleosomes and concluded that histones are not disassociated from the DNA significantly prior to DNA replication, and that a very rapid reassociation of nucleosomes occurs on both daughter DNA molecules following replication.  相似文献   

12.
Efficient duplication of the eukaryotic genome requires the spatial and temporalcoordination of numerous replication origins on each chromosome. Epigenetic factors,like chromatin environment, can have profound effects on origin site selection, utilizationfrequency, and cell cycle firing time. Precisely how chromatin contributes to origin siteselection and timing is not completely understood. Recently, we reported on the cellcycle changes in chromatin structure at the plasmid replication origins of Epstein-BarrVirus (EBV) and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)1,2. These studiesand others suggest that cell cycle changes in histone modification and nucleosomeremodeling regulate pre-replication factor assembly and initiation of DNA replication atorigins. We discuss how these studies of viral origins may provide important insightsinto epigenetic control of cellular chromosome origins.  相似文献   

13.
M Méchali  F Méchali  R A Laskey 《Cell》1983,35(1):63-69
The effect of the tumor promoter TPA on the control of DNA replication was assayed by following the regulated replication of DNA microinjected into eggs of the frog Xenopus laevis. TPA increases the amount of replication of injected DNA. Both initiation of replication on parental DNA molecules and reinitiation on previously replicated molecules are stimulated. Interaction with the external membrane appears necessary since injections of high concentrations of TPA into the egg are ineffective, whereas nM concentrations are active in the external medium. Related molecules that lack tumor promoting activity do not affect DNA replication. The effect of TPA on DNA replication was detectable only after the first cell cycle, and TPA cannot induce replication in oocytes, the quiescent stage which precedes the egg. When protein synthesis is inhibited TPA still increases initiation of replication, but does not allow detectable reinitiation cycles. The results suggest that interaction of TPA with the cell membrane is sufficient to increase the efficiency of replication initiation by a mechanism that does not require illegitimate reinitiation within a single cell cycle.  相似文献   

14.
15.
16.
17.
The bacterium Vibrio cholerae, the cause of the diarrhoeal disease cholera, has its genome divided between two chromosomes, a feature uncommon for bacteria. The two chromosomes are of different sizes and different initiator molecules control their replication independently. Using novel methods for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation.  相似文献   

18.
In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.  相似文献   

19.
Herrick J  Bensimon A 《Chromosoma》2008,117(3):243-260
In eukaryotes, DNA replication is initiated along each chromosome at multiple sites called replication origins. Locally, each replication origin is “licensed” or specified at the end of the M and the beginning of the G1 phases of the cell cycle. During the S phase when DNA synthesis takes place, origins are activated in stages corresponding to early and late-replicating domains. The staged and progressive activation of replication origins reflects the need to maintain a strict balance between the number of active replication forks and the rate at which DNA synthesis proceeds. This suggests that origin densities (frequency of initiation) and replication fork movement (rates of elongation) must be coregulated to guarantee the efficient and complete duplication of each subchromosomal domain. Emerging evidence supports this proposal and suggests that the ATM/ATR intra-S phase checkpoint plays an important role in the coregulation of initiation frequencies and rates of elongation. In this paper, we review recent results concerning the mechanisms governing the global regulation of DNA replication and discuss the roles these mechanisms play in maintaining genome stability during both a normal and perturbed S phase.  相似文献   

20.
Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA synthesis is perturbed, cells can suffer loss of both genome and epigenome integrity with severe consequences for the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号