首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans, Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20 degrees C but not at 37 degrees C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria.  相似文献   

2.
Centrifugation in sucrose density gradients of partially purified extracts from six species of fungi, i.e., Rhizopus stolonifer, Phycomyces nitens, Absidia glauca (Phycomycetes), Aspergillus nidulans (Ascomycetes), Coprinus lagopus, and Ustilago maydis (Basidiomycetes), indicate that the five enzymes catalyzing steps two to six in the prechorismic acid part of the polyaromatic synthetic pathway sediment together. The sedimentation coefficients for these enzymes are very similar in the six species and are comparable to those previously observed for the multienzyme complexes (arom aggregates) of Neurospora crassa and Saccharomyces cerevisiae. These results are interpreted as indicating the presence in each of these fungi of arom aggregates, presumably encoded by arom gene clusters similar to those in N. crassa and S. cerevisiae. Evidence has also been obtained for the presence in two species (A. nidulans and U. maydis) and the absence in the other four species of a second dehydroquinase isozyme which is distinguishable from the synthetic activity on the basis of both thermostability tests and S values. This second dehydroquinase, which is apparently involved in the catabolism of quinic acid via a pathway similar to that in N. crassa, is inducible in A. nidulans (as it is in N. crassa), but constitutive in U. maydis. These comparative findings are discussed in relation to the organization, evolution, and possible functional relationships of synthetic and catabolic aromatic pathways in fungi.  相似文献   

3.
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.  相似文献   

4.
Approximately 50% of Glut1 in the plasma membrane of Clone 9 cells is localized to the detergent-resistant membrane (DRM) fraction. Acute exposure (90 min) to 5mM azide stimulated glucose transport by approximately 4.7-fold and increased the abundance of Glut1 in the non-DRM fraction of the plasma membrane by approximately 2.9-fold while the abundance of Glut1 in the DRMs was not changed. In parallel experiments, approximately 17 h exposure to azide further increased the rate of glucose transport over that observed at 90 min by approximately 33% and increased plasma membrane Glut1 content by approximately 3.5-fold over control. The increase in total plasma membrane Glut1 reflected a approximately 4.7-fold increase of Glut1 content in the non-DRM fraction and a approximately 2.6-fold increase in the DRMs. We conclude that acute exposure to azide increases Glut1 content in the non-DRM fractions, while prolonged exposure to azide increases the Glut1 content in both non-DRM and DRM fractions. These changes may play an important role in the stimulation of glucose transport in response to the inhibition of oxidative phosphorylation.  相似文献   

5.
Hammond TM  Keller NP 《Genetics》2005,169(2):607-617
The versatility of RNA-dependent RNA polymerases (RDRPs) in eukaryotic gene silencing is perhaps best illustrated in the kingdom Fungi. Biochemical and genetic studies of Schizosaccharomyces pombe and Neurospora crassa show that these types of enzymes are involved in a number of fundamental gene-silencing processes, including heterochromatin regulation and RNA silencing in S. pombe and meiotic silencing and RNA silencing in N. crassa. Here we show that Aspergillus nidulans, another model fungus, does not require an RDRP for inverted repeat transgene (IRT)-induced RNA silencing. However, RDRP requirements may vary within the Aspergillus genus as genomic analysis indicates that A. nidulans, but not A. fumigatus or A. oryzae, has lost a QDE-1 ortholog, an RDRP associated with RNA silencing in N. crassa. We also provide evidence suggesting that 5' --> 3' transitive RNA silencing is not a significant aspect of A. nidulans IRT-RNA silencing. These results indicate a lack of conserved kingdom-wide requirements for RDRPs in fungal RNA silencing.  相似文献   

6.
Reduction of the glucose concentration in the culture medium of 3T3-L1 adipose cells below 1.25 mM produces a 4-8-fold stimulation of 2-deoxyglucose uptake which starts after a lag phase of 2 h and is maximal after 10-16 h. In the present study, we employed the 'membrane sheet assay' in order to re-assess the contribution of the transporter isoforms GLUT1 and GLUT4 to this effect. Immunochemical assay of glucose transporters in membranes prepared with the 'sheet assay' revealed that the effect reflected a marked increase of GLUT1 in the plasma membrane with no effect on GLUT4. Glucose deprivation increased the total cellular GLUT1 protein in parallel with the transport activity, whereas GLUT4 was unaltered. The specific PI 3-kinase inhibitor wortmannin inhibited the effect of glucose deprivation on transport activity and also on GLUT1 synthesis. Glucose deprivation produced a moderate, biphasic increase in the activity of the protein kinase Akt/PKB that was inhibitable by wortmannin. When wortmannin was added after stimulation of cells in order to assess the internalization rate of transporters, the effect of insulin was reversed considerably faster (T1/2 = 18 min) than that of glucose deprivation (T1/2 > 60 min). These data are consistent with the conclusion that the effect of glucose deprivation reflects a specific, Akt-dependent de-novo synthesis of GLUT1, and not of GLUT4, and its insertion into a plasma membrane compartment which is distinct from that of the insulin-sensitive GLUT1.  相似文献   

7.
Dm-AMP1, an antifungal plant defensin from seeds of dahlia (Dahlia merckii), was radioactively labeled with t-butoxycarbonyl-[35S]-L-methionine N-hydroxy-succinimi-dylester. This procedure yielded a 35S-labeled peptide with unaltered antifungal activity. [35S]Dm-AMP1 was used to assess binding on living cells of the filamentous fungus Neurospora crassa and the unicellular fungus Saccharomyces cerevisiae. Binding of [35S]Dm-AMP1 to fungal cells was saturable and could be competed for by preincubation with excess, unlabeled Dm-AMP1 as well as with Ah-AMP1 and Ct-AMP1, two plant defensins that are highly homologous to Dm-AMP1. In contrast, binding could not be competed for by more distantly related plant defensins or structurally unrelated antimicrobial peptides. Binding of [35S]Dm-AMP1 to either N. crassa or S. cerevisiae cells was apparently irreversible. In addition, whole cells and microsomal membrane fractions from two independently obtained S. cerevisiae mutants selected for resistance to Dm-AMP1 exhibited severely reduced binding affinity for [35S]Dm-AMP1, compared with wild-type yeast. This finding suggests that binding of Dm-AMP1 to S. cerevisiae plasma membranes is required for antifungal activity of this protein.  相似文献   

8.
The regulation of intracellular urease and uricase activities was examined in Rhizopus oryzae. Urease activity (2.4 U/mg protein) was present in R. oryzae mycelium grown in minimal medium containing NH4CI as sole nitrogen source. This activity increased threefold under nitrogen derepression conditions, but no induction by urea was detected. Control of urease activity in R. oryzae differs from that found in Neurospora crassa but resembles the situation in Aspergillus nidulans. No uricase activity was detected in R. oryzae mycelium grown in minimal medium containing NH4Cl as sole nitrogen source. Uricase activity was increased 10- to 40-fold under derepression conditions and was induced by exogenous uric acid (60- to 78-fold). Control of the R. oryzae uricase differs from that found in N. crassa and A. nidulans. This is the first analysis of the regulation of enzymes from the purine catabolic pathway in any member of the Zygomycetes.  相似文献   

9.
Genome mining of cyanide-degrading nitrilases from filamentous fungi   总被引:1,自引:1,他引:0  
A variety of fungal species are known to degrade cyanide through the action of cyanide hydratases, a specialized subset of nitrilases which hydrolyze cyanide to formamide. In this paper, we report on two previously unknown and uncharacterized cyanide hydratases from Neurospora crassa and Aspergillus nidulans. Recombinant forms of four cyanide hydratases from N. crassa, A. nidulans, Gibberella zeae, and Gloeocercospora sorghi were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in Escherichia coli, and purified using immobilized metal affinity chromatography. These enzymes were compared according to their relative specific activity, pH activity profiles, thermal stability, and ability to remediate cyanide contaminated waste water from silver and copper electroplating baths. Although all four were similar, the N. crassa cyanide hydratase (CHT) has the greatest thermal stability and widest pH range of >50% activity. N. crassa also demonstrated the highest rate of cyanide degradation in the presence of both heavy metals. The CHT of A. nidulans has the highest reaction rate of the four fungal nitrilases evaluated in this work. These data will help determine optimization procedures for the possible use of these enzymes in the bioremediation of cyanide-containing waste. Similar to known plant pathogenic fungi, both N. crassa and A. nidulans were induced to express CHT by growth in the presence of KCN.  相似文献   

10.
11.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

12.
Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex.  相似文献   

13.
14.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suc 0 and N. crassa inv strains transformed with p NC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suc 0 ( p NC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa , although S. cerevisiae suc + did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI -restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

15.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

16.
The genetic activity of furapromidium (F30066), an antischistosomal drug, was studied in Salmonella typhimurium, Saccharomyces cerevisiae, Neurospora crassa and cultured Chinese hamster cells. The results show that F30066 induces gene mutations in S. typhimurium, N. crassa and Chinese hamster cells. This compound also causes gene conversions in S. cerevisiae.  相似文献   

17.
The positively acting regulator gene QUTA from Aspergillus nidulans has been identified and located within a cluster of quinic acid utilisation (QUT) genes isolated within a recombinant phage lambda (lambda Q1). The DNA sequence of the QUTA gene reveals a single uninterrupted reading frame coding for a protein of mw 90.416 Kd. The QUTA protein sequence has a protein motif in the form of a putative "DNA finger" that shows strong homology to other such motifs in the GAL4, PPR1, ARGRII, LAC9 and QA1F regulatory gene products of S. cerevisiae, K. lactis and N. crassa. The data presented confirm the view deduced by genetical analysis that the QUTA gene of A. nidulans encodes a protein capable of interacting with QUT specific DNA sequences.  相似文献   

18.
Tom70 and Mdm10 are mitochondrial outer membrane proteins. Tom70 is implicated in the import of proteins from the cytosol into the mitochondria in Saccharomyces cerevisiae and Neurospora crassa. Mdm10 is involved in the morphology and distribution of mitochondria in S. cerevisiae. Here we report on the characterization of the genes encoding these proteins in the filamentous fungus Podospora anserina. The two genes were previously genetically identified through a systematic search for nuclear suppressors of a degenerative process displayed by the AS1-4 mutant. The PaTom70 protein shows 80% identity with its N. crassa homolog. The PaMdm10 protein displays 35.9% identity with its S. cerevisiae homolog, and cytological analyses show that the PaMDM10-1 mutant exhibits giant mitochondria, as does the S. cerevisiae mdm10-1 mutant. Mutations in PaTOM70 and PaMDM10 result in the accumulation of specific deleted mitochondrial genomes during the senescence process of the fungus. The phenotypic properties of the single- and double-mutant strains suggest a functional relationship between the Tom70 and Mdm10 proteins. These data emphasize the role of the mitochondrial outer membrane in the stability of the mitochondrial genome in an obligate aerobe, probably through the import process.  相似文献   

19.
W C Shen  J Wieser  T H Adams  D J Ebbole 《Genetics》1998,148(3):1031-1041
The Aspergillus nidulans flbD gene encodes a protein with a Myb-like DNA-binding domain that is proposed to act in concert with other developmental regulators to control initiation of conidiophore development. We have identified a Neurospora crassa gene called rca-1 (regulator of conidiation in Aspergillus) based on its sequence similarity to flbD. We found that N. crassa rca-1 can complement the conidiation defect of an A. nidulans flbD mutant and that induced expression of rca-1 caused conidiation in submerged A. nidulans cultures just as was previously observed for overexpression of flbD. Thus, the N. crassa gene appears to be a functional homologue of A. nidulans flbD and this is the first demonstration of functional complementation of an A. nidulans sporulation defect using a gene from an evolutionarily distant fungus. However, deletion of the rca-1 gene in N. crassa had no major effect on growth rate, macroconidiation, microconidiation, or ascospore formation. The only phenotype displayed by the rca-1 mutant was straight or counterclockwise hyphal growth rather than the clockwise spiral growth observed for wild type. Thus, if rca-1 is involved in N. crassa development, its role is subtle or redundant.  相似文献   

20.
Insulin is known to increase the number of cell surface insulin-like growth factor II (IGF-II) receptors in isolated rat adipose cells through a subcellular redistribution mechanism similar to that for the glucose transporter. The effects of insulin on these two processes, therefore, have now been directly compared in the same cell preparations. 1) Insulin increases the steady state number of cell surface IGF-II receptors by 7-13-fold without affecting receptor affinity; however, insulin stimulates glucose transport activity by 25-40-fold. 2) The insulin concentration required for half-maximal stimulation of cell surface IGF-II receptor number is approximately 30% lower than that for the stimulation of glucose transport activity. 3) The half-time for the achievement of insulin's maximal effect at 37 degrees C is much shorter for IGF-II receptor number (approximately 0.8 min) than for glucose transport activity (approximately 2.6 min). 4) Reversal of insulin's action at 37 degrees C occurs more rapidly for cell surface IGF-II receptors (t1/2 congruent to 2.9 min) than for glucose transport activity (t1/2 congruent to 4.9 min). 5) When the relative subcellular distribution of IGF-II receptors is examined in basal cells, less than 10% of the receptors are localized to the plasma membrane fraction indicating that most of the receptors, like glucose transporters, are localized to an intracellular compartment. However, in response to insulin, the number of plasma membrane IGF-II receptors increases only approximately 1.4-fold while the number of glucose transporters increases approximately 4.5-fold. Thus, while the stimulatory actions of insulin on cell surface IGF-II receptors and glucose transport activity are qualitatively similar, marked quantitative differences suggest that the subcellular cycling of these two integral membrane proteins occurs by distinct processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号