首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Phytoplankton abundance and community structure were determined routinely over an annual period and intensively during two storm-runoff events in a small suburban reservoir in northern Virginia, U.S.A. Traditional graphical techniques and a multivariate approach (Principal Components Analysis) were used to demonstrate a seasonal pattern of phytoplankton succession with greens and blue-greens dominant in summer, diatoms and chrysophytes in spring and fall, and cryptophytes in winter. Spatial variations were minor over horizontal and vertical dimensions during spring mixis, but depth variations were substantial during summer stratification. Storm runoff had little effect on phytoplankton composition during the stable summer period, but was associated with a substantial perturbation in community structure during the spring to summer transition.  相似文献   

2.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

3.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

4.
The effects on edaphic algae associated with a pure stand of the cord grass, Spartina alterniflora Loisel of manipulating light intensity and additions of inorganic nitrogen and phosphorus as fertilizers to the marsh surface have been investigated for one year. The standing crop of edaphic algae as measured by chlorophyll a production was limited only by phosphorus supplies during fall and winter, by both phosphorus and nitrogen in spring, and only by nitrogen during the summer. Since the responses were in phase with the seasonal fluctuations in the concentration of nitrogen and phosphorus, it is concluded that the flood tide is the major source of nitrogen and phosphorus compounds for edaphic algal growth. Reduction in the quantity of light reaching the edaphic algae by Spartina cover is always a limiting factor for the standing crop. A gradient in the composition of the algal flora is directly related to light intensity, and indicates that this factor determines the relative contribution of diatoms and filamentous algae to the community. The interaction of light intensity and nutrients in regulating the production of edaphic algae and cord grass on the marsh under study over a yearly cycle has also been investigated.  相似文献   

5.
The occurrence, periodicity and growth of twenty species of unicellular Volvocales on sediments in an acidic pool are described. Minimum populations were recorded in winter, but during the rest of the year standing crops fluctuated rapidly. The greatest species diversity and primary productivity occurred in late spring-early summer and in autumn, when maximum numbers of Chlamydomonas spp. and Chloromonas spp. increased exponentially on the sediments. The chlamydomonads were more numerous in the epipelon than other major algal components such as diatoms, euglenoids, bluegreen algae and desmids. Growth of the chlamydomonad population occurred after the period of maximum diatom standing crop. Evidence shows that rates of primary production were greater in late spring and late summer when species diversity and standing crop or apparent growth rates of unicellular Volvocales were high. Thus these algae which are normally neglected may be more important in primary productivity than previously believed since they grow during periods when larger algae are scarce. Analysis of the data using the multivariate technique of Reciprocal Averaging confirmed seasonal periodicity in this community of epipelic flagellates. It also identified species with distinctive ecological requirements. A relationship between the bicarbonate-alkalinity of the overlying water and the chlamydomonad population was demonstrated by ordination analysis.  相似文献   

6.
Tri‐Lakes (Upper and Lower Camelot, Sherwood, Arrowhead) in Adams County, WI, USA are man‐made impoundments draining substantial agricultural lands and surrounded by considerable shoreline residential development. The planktonic algal community, as sampled from June to November 2000, was sparse‐to‐moderately dense, fairly diverse (69 genera from six divisions basin‐wide), and unremarkable in taxonomic composition. All sites sampled displayed the general algal successional trends expected from northern‐temperate, mildly eutrophic waters. These included sparse but taxonomically diverse communities in the spring; a late spring pulse of diatoms; a late summer pulse of green algae; and a steadily increasing component of Cyanobacteria leading to their community dominance by the end of the growing season. Upper Lake Camelot (55 genera) best represented this pattern. Lower Lake Camelot (53 genera) had a large green algal pulse but only a small diatom pulse. Lake Sherwood was the most taxonomically diverse body (63 genera) and had the most extreme pulses of diatoms and greens. Lake Arrowhead had the lowest taxonomic diversity (39 genera), was the most dominated by Cyanobacteria, and had only minor pulses of diatoms and greens. The algal communities indicate a mesotrophic to slightly eutrophic lake status. Continued agricultural and residential inputs of fertilizers and pesticides will likely exacerbate the cyanobacterial dominance leading to further reductions in aquatic health and aesthetic values. Previous chemical treatment and macrophyte removal have achieved limited success, and might have altered algal community dynamics. Remediation approaches that might improve water quality include: reducing upstream inputs via sediment traps or lagoons; reducing in‐lake nutrients via sediment removal; reducing residential inputs via improved septic/sanitation systems; and shoreline vegetation filter strips.  相似文献   

7.
Seasonal succession of the phytoplankton in the upper Mississippi River   总被引:1,自引:1,他引:0  
Species composition and seasonal succession of the phytoplankton were investigated on the upper Mississippi River at Prairie Island, Minnesota, U.S.A. Both the numbers and volume of individual species were enumerated based on cell counts with an inverted microscope. A succession similar to algal succession in the local lakes occurred. The diatoms were dominant during the spring and fall and blue-green algae were dominant during the summer. The algal concentrations have increased up to 40 fold the concentrations of the 1920's, since the installation of locks and dams. The maximum freshweight standing crop was 4 mg · l–1 in 1928 (Reinhard 1931), 13 mg · l–1 in 1975 a wet year, and 47 mg · l–1 in 1976, a relatively dry year with minimal current discharge. The diatoms varied from 36–99%, the blue-green algae from 0–44% and the cryptómonads from 0–50% of the total standing crop. The green algae were always present but never above 21% of the biomass. The dominant diatoms in recent years were centric -Stephanodiscus andCyclotella spp. (maximum 50,000 ml–1). The dominant blue-green algae wereAphanizomenon flos-aquae (L.) Ralfsex Born.et Flahault andOscillatoria agardhii Gomont (maximum 800 ml–1). These algal species are also present in local lakes. Shannon diversity values indicated greatest diversity of algae during the summer months.  相似文献   

8.
Trono  Gavino C.  Lluisma  Arturo O. 《Hydrobiologia》1990,204(1):331-338
The seasonality of standing crop of a Sargassum bed was investigated by conducting monthly sampling from February 1988 to July 1989. Environmental parameters of water movement, salinity, number of daytime minus tides, and water temperature were also measured. An intra-annual pattern of variation in standing crop of Sargassum crassifolium, S. cristaefolium, S. oligocystum, and S. polycystum was observed. Standing crop was generally lowest in February, March, April, or May, and highest in November through January. Sargassum accounted for about 35 to 85% of the monthly algal standing crop of the bed, and the observed variation in overall standing crop of the bed generally reflected the standing crop of Sargassum. The seasonality of the standing crops of the associated algal divisions also followed an annual cycle, but their maximum and minimum standing crops did not coincide with those of Sargassum. Individually, as well as collectively, the standing crops of the Sargassum spp. were poorly correlated with the environmental factors observed.  相似文献   

9.
Heo  Woo-Myung  Kim  Bomchul 《Hydrobiologia》2004,524(1):229-239
The effects of artificial destratification on limnological conditions and on phytoplankton were surveyed for 6 years (1995-2000) in Lake Dalbang (South Korea), a water supply reservoir receiving nutrients from agricultural non-point sources. In order to reduce odor problems caused by cyanobacterial blooms, six aerators were installed in 1996 and operated regularly during the warm season. Aeration destratified the water column of the reservoir and produced homogeneous physical and chemical parameters. The maximum surface temperature in summer decreased from 28.9 °C before aeration to 20.0-26.4 °C after aeration, whereas the maximum hypolimnetic temperature increased from 8.0 to 17.0-23.7 °C. Despite these changes, surface water concentrations of total phosphorus (TP) and chlorophyll a(CHLA) and their seasonal patterns did not change with destratification. Phosphorus loading was concentrated in heavy rain events during the summer monsoon, and TP and CHLA reached maximal concentrations in late summer after the monsoon. Because the hypolimnion was never anoxic prior to aeration, internal loading did not seem to be substantial. Cyanobacteria were the dominant phytoplankton in summer before aeration, but diatoms replaced them after operation of the aerator. Cyanobacteria blooms were eliminated. In contrast, total algal biomass in the water column (as CHLA integrated over depth) increased from 190 mg m–2 in 1995 to 1150, 300, 170, and 355 mg m–2 in 1997, 1998, 1999, and 2000, respectively. The increased ratio of mixing depth to euphotic depth to 2.5 may have resulted in a net reduction in the amount of underwater irradiance experienced by phytoplankton cells, and this may have favored the switch to diatom dominance. Furthermore, the mixing may have allowed diatoms to flourish in summer by lowering their settling loss that would be critical in stratified water columns. In conclusion, the destratification in this reservoir was effective in preventing cyanobacteria blooms, but not in reducing the total algal standing crop.  相似文献   

10.
The algal assemblages of a small limestone stream were studied for a year at monthly intervals. Algal standing crop was permanently high (mean concentration of 158 mg Chl-a · m–2), but it reached the maximum values in spring and summer. Diatoms were dominant in the algal assemblages throughout this time, and more than one hundred species were recorded during the survey. Most of them are characteristic of hard waters, but others, mainly occurring in summer, have been observed elsewhere in moderately halophile waters.A striking succession was observed in the diatom assemblage in the stream in each season. This succession, with a maximum in summer, was mainly related with the lessening in flow and the increase in water mineralization. Moreover, the diversity of the samples increased sharply from April 1982 to July 1983. In fact, a progressive increase in salinity tolerant species could be observed from winter and spring to summer. Nitzschia sociabilis, Navicula gregaria, Navicula lanceolata and Gomphonema olivaceum were the most abundant species in winter, whereas Achnanthes minutissima reached its maximum in spring and Navicula schroeterii, Nitzschia thermaloides and Cyclotella meneghiniana were some of the most abundant in summer.  相似文献   

11.
The phytoplankton succession during the summer in the mesotrophic reservoir Saidenbach since 1975 may well be explained by the resource ratio hypothesis. Until 1980, only phosphorus controlled the phytoplankton growth, and diatoms prevailed, because an excesses of silicon existed. From 1981 to 1986, the ratio Si:P often was smaller than 90, a value, critical for the development of the diatom Fragilaria crotonensis. Its reduced growth caused an increased occurrence of blue-greens (mostly Aphanothece clathrata) immediately after the diatom mass development. During these years at first silicon limited phytoplankton growth in summer, later on the growth again was limited by phosphorus. Because of increased Si and P load since 1987 a simultaneous limitation of both nutrients occurs. This leads now to parallel mass developments of diatoms and blue-greens. In order to maintain the positive effect of diatoms (phosphorus transport into the sediment), it is to guarantee a sufficiently high Si:P ratio. If a reduction of P load isn't possible, Si remobilization from the sediment could be increased by artificial changes of the water level.  相似文献   

12.
Field and laboratory experiments show that when nutrients (N and P) are added to a mixed population of algae, blue-greens predominate. However, if CO2 is added also, or if pH is lowered with HCl, greens predominate. The phenomenon is reproducible, and works with most lakes. Although most successful at pH 5.5, the shift to greens can be made to happen at pH values as high as 8.5. Most blue-greens appear to be susceptible to the shift, and Scenedesmus and Chlorella are the predominant greens resulting. If pH is raised, the shift is reversed. The reason for the shift is not known. It may involve competition by the algae for CO2, but other evidence suggests that the lowered pH stimulates cyanophage production and lysis of the blue-greens, with release of nutrients which then are used by the greens. Analysis of results of lake circulation data from the literature and from experiments suggests that the algal shifts resulting from circulation may involve the same phenomena. Understanding of these phenomena should lead to predictable use of circulation as a lake-management tool.  相似文献   

13.
A year-round study of the algal composition of a previously uninvestigated north temperate, dimictic lake revealed the abundance of many pollution-tolerant forms, including such toxin-producing blue-greens as Anabaena and Aphanizomenon. A significant hypolimnetic oxygen deficit (0.4 ppm, 3.5% saturation) in late summer and the rate of oxygen depletion from 1 August to 19 September (0.13 mg/ml/day) further indicate eutrophic conditions. Of the three groups considered in this study (Chlorophyta, Bacillariophyta and Cyanophyta), the Cyanophyta were less diverse in terms of relative numbers of genera but produced the largest blooms. Chlorophyta had the greatest number of genera. Diatoms dominated in winter and spring, Chlorophyta in summer and fall and blue-greens in late summer, fall and winter. Spirogyra and Oscillatoria were the most ubiquitous members of the algal flora. Important perennials included Oscillatoria, Spirogyra, Closterium, Fragilaria, Meridion, Tabellaria and Cymbella. No unialgal blooms ever occurred. The accelerated rate of eutrophication in recent years is due primarily to excess nutrient loading resulting from input of raw domestic sewage. The completion of a sanitary sewer system is expected to alleviate the excessive nutrient loading and thereby slow the eutrophication process.  相似文献   

14.
A study of the phytoplankton community dynamics in Navigation Pool No. 7 of the Upper Mississippi River was conducted from May through October, 1982. The objectives of this study were to estimate total standing crops, determine the taxonomic composition and examine the seasonal succession of the phytoplankton community. Four sampling sites were established: two in Lake Onalaska, a large backwater lake on the Wisconsin side of the main channel; one in the main channel near Dakota, Minnesota; and one in the main channel just upstream from Lock and Dam No. 7.The phytoplankton communities at all sampling sites were dominated by diatoms except during July and August when a bloom of blue-green algae was observed. The dominant diatoms from May through mid-July were Melosira italica, Stephanodiscus niagarae, Stephanodiscus hantzschii, Stephanodiscus astrea, and Synedra ulna. Aphanizomenon flos-aquae and Microcystis aeruginosa were the most prevalent blue-green algae during the mid-summer bloom. The diatoms Melosira italica and Melosira granulata were dominant in September and October. Lesser amounts of green algae, cryptomonads and euglenoids were also observed at various times of the sampling period.Total standing crops based on cell volume were usually greatest at the Lock and Dam No. 7 site. The maximum standing crop (10.4 mm3 1–1) was observed at the Lock and Dam No. 7 site on 4 September; the minimum standing crop (0.4 mm3 1–1) was observed at the eastern Lake Onalaska site on the same date. Concentrations of nitrogen, phosphorus, and silica remained at high levels throughout the study period and did not appear to limit phytoplankton standing crops.  相似文献   

15.
Lake Pamvotis is a moderately sized (22 km2) shallow (z avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4 +=0.25 mg N l-1, NO3 =0.56 mg N l-1). FRP and NH4 + levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.  相似文献   

16.
The investigation of the epiphyton associated with Scirpus validus VAHL. in Lake Wabamun commenced in May 1971 and continued until the end of August 1972. Seven stations encompassing heated, partially and non-heated areas of the lake were investigated. From July 1971 until the termination of the investigation water temperature, dissolved oxygen and water chemistry were monitored. There were no large variations in these parameters except for water temperature and dissolved oxygen levels among the stations. However, there were increases in the dissolved silica, nitratenitrogen and phosphate-phosphorus levels during the autumn and winter months at the heated stations while at a partially heated station only dissolved silica and nitrate-nitrogen increased. The epiphyton at all stations showed a spring maximum, a summer minimum, and a maximum in the late summer/early autumn. The spring dominants at all stations were Fragilaria capucina and Diatoma elongatum. During the late summer/early autumn maximum diatoms were dominant at the non-heated stations while chlorophycean species were dominant at the heated stations. The heated water caused a decrease in the number of species and a corresponding increase in the importance of a few species at the heated stations. The major impact of the heated water, however, was an extension of the period of open water and the corresponding increase in mean yearly standing crop size in the heated areas.  相似文献   

17.
SUMMARY. Phytoplankton standing crop, primary production, light penetration, temperature, and various chemical concentrations were measured in a man-made, deep-discharge, reservoir and in a natural, surface-discharge, lake in order to relate limnological conditions in the two bodies of water to their depth of outflow. The quantity and depth distribution of heat stored during the summer varied markedly. The reservoir functioned as a heat trap, whereas heat was readily dissipated from the lake. Salinity increased more in the lower layer of the lake. Throughout the summer, nutrient-rich water was discharged from the reservoir whereas nutrient-poor water was discharged from the lake. Phytoplankton standing crops were greater in the lake and were dominated by flagellates and diatoms. In the reservoir, blue-green algae were predominant. Rates of primary production and respiration were higher in the lake, but estimated algal turnover times were faster in the reservoir. It was concluded that depth of outflow has a direct and predictable effect on certain physical and chemical conditions within these two bodies of water; but effects of discharge depth on phytoplankton were secondary and thus difficult to ascertain.  相似文献   

18.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

19.
Methods of estimating the standing crops of epipsammic diatoms have been evaluated and compared with those used for epipelic algal crops.

Good correlations between chlorophyll a content and cell counts were obtained for epipelic populations, but because of the presence of large numbers of decaying cells, inseparable from living cells, such correlation was not obtained with epipsammic algae, even after correction of the pigment estimates for the presence of pheophytin a. The standing crop of epipsammic algae was at all times greater than that of epipelic algae at the same sampling station, and this was attributed to the differential effects of sediment disturbance by burrowing animals and water movements.  相似文献   

20.
The species composition and seasonal periodicity of the phytoplankton in Lake Vechten (The Netherlands) have been studied over a 20 year period. The results show a more or less regular pattern of algal succession during the year. Phytoplankton growth starts early in the year leading to a maximum in early spring, dominated by Bacillariophyceae and some Chlorophyceae. In summer a second maximum develops mainly consisting of a chrysophycean and a dinophycean species, accompanied by several Chlorophyceae. In September the summer species are gradually succeeded by diatoms. By the end of the summer stratification in October algal numbers decrease rapidly. The winter community consists of several species of Cryptophyceae and Chrysophyceae.When the data of 1975–1979 are compared with those from earlier records, distinct changes can be observed. These changes are discussed with reference to the trophic status of the lake. The vertical distribution of some species is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号