首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seeds of 36 pigeonpea [Cajanus cajan (L) Millsp.] cultivars, resistant and susceptible to pests and pathogens and 17 of its wild relatives were analysed for inhibitors of trypsin, chymotrypsin, and insect gut proteinases to identify potential inhibitors of insect (Helicoverpa armigera) gut enzymes. Proteinase inhibitors (PIs) of pigeonpea cultivars showed total inhibition of trypsin and chymotrypsin, and moderate inhibition potential towards H. armigera proteinases (HGP). PIs of wild relatives exhibited stronger inhibition of HGP, which was up to 87% by Rhynchosia PIs. Electrophoretic detection of HGPI proteins and inhibition of HGP isoforms by few pigeonpea wild relative PIs supported our enzyme inhibitor assay results. Present results indicate that PIs exhibit wide range of genetic diversity in the wild relatives of pigeonpea whereas pigeonpea cultivars (resistant as well as susceptible to pests and pathogens) are homogeneous. The potent HGPIs identified in this study need further exploration for their use in strengthening pigeonpea defence against H. armigera.  相似文献   

2.
Dry mature seeds of winged bean (Psophocarpus tetragonolobus L., DC.) (WB) contain several proteinase inhibitors. Two-dimensional gel analysis of WB seed protein followed by activity visualization using a gel-X-ray film contact print technique revealed at least 14 trypsin inhibitors (TIs) in the range of 28-6 kD. A total of seven inhibitors (WBTI-1 to 7) were purified by heat treatment and gel filtration followed by elution from preparative native gels. Based on their biochemical characterization such as molecular mass, pI, heat stability, and susceptibility to inactivation by reducing agents, WBTI-1 to 4 are Kunitz type inhibitors while WBTI-5 to 7 are classified as Bowman-Birk type serine proteinase inhibitors. Although Kunitz type TIs (20-24 kD) of WB have been reported, the smaller TIs that belong to the Bowman-Birk type have not been previously characterized. Seven major TIs isolated from WB seed were individually assessed for their potential to inhibit the gut proteinases (HGP) of Helicoverpa armigera, a pest of several economically important crops, which produces at least six major and several minor trypsin/chymotrypsin/elastase-like serine proteinases in the gut. WBTI-1 (28 kD) was identified as a potent inhibitor of HGP relative to trypsin and among the other WBTIs; it inhibited 94% of HGP activity while at the same concentration it inhibited only 22% of trypsin activity. WBTI-2 (24 kD) and WBTI-4 (20 kD) inhibited HGP activity greater than 85%. WBTI-3,-5,-6 and-7 showed limited inhibition of HGP as compared with trypsin. These results indicate that WBTIs have different binding potentials towards HGP although most of the HGP activity is trypsin-like. We also developed a simple and versatile method for identifying and purifying proteinase inhibitors after two-dimensional separation using the gel-X-ray film contact print technique.  相似文献   

3.
Helicoverpa armigera, a highly polyphagous pest, has a broad host spectrum, causes significant levels of yield loss in many agriculturally important crops. Serine primarily responsible for most of the proteolytic activity in the larval gut of lepidopteron insects. Neonate larvae were reared on artificial diet and chickpea seeds smeared with Subabul Trypsin Inhibitor. Larvae fed with artificial diet showed reduction in larval weight up to 21% (HSTI) and 43% (LSTI). However, larvae fed on seeds showed significant reduction in weight, 52.4% (HSTI) and 60.3% (LSTI), suggesting that the diet also plays a vital role on the effectiveness of the inhibitors on larval growth and development. HSTI and LSTI inhibited the gut proteinases from larvae fed on artificial diet significantly (41.40% and 64.36%) compared to the gut proteinases (27.80% and 38.90%) from larvae fed on chickpea seeds. Seeds smeared with 10,000 TIU resulted in complete mortality of larvae while there was no mortality observed in artificial diet. The results reveal that LSTI is a stronger inhibitor of insect gut proteinases and for larvae fed with poor nutrition in the natural ecosystems, low level expression of inhibitor would be enough to affect the growth and development. Handling editor: Chen-Zhu Wang  相似文献   

4.
Proteinase inhibitors (PIs) from the seeds of bitter gourd (Momordica charantia L.) were identified as strong inhibitors of Helicoverpa armigera gut proteinases (HGP). Biochemical investigations showed that bitter gourd PIs (BGPIs) inhibited more than 80% HGP activity. Electrophoretic analysis revealed the presence of two major proteins (BGPI-1 and-2) and two minor proteins (BGPI-3 and-4) having inhibitory activity against both trypsin and HGP. The major isoforms BGPI-1 and BGPI-2 have molecular mass of 3.5 and 3.0 kDa, respectively. BGPIs inhibited HGP activity of larvae fed on different host plants, on artificial diet with or without added PIs and proteinases excreted in fecal matter. Degradation of BGPI-1 by HGP showed direct correlation with accumulation of BGPI-2-like peptide, which remained stable and active against high concentrations of HGP up to 3 h. Chemical inhibitors of serine proteinases offered partial protection to BGPI-1 from degradation by HGP, suggesting that trypsin and chymotrypsin like proteinases are involved in degradation of BGPI-1. In larval feeding studies, BGPIs were found to retard growth and development of two lepidopteran pests namely Helicoverpa armigera and Spodoptera litura. This is the first report showing that BGPIs mediated inhibition of insect gut proteinases directly affects fertility and fecundity of both H. armigera and S. litura. The results advocate use of BGPIs to introduce insect resistance in otherwise susceptible plants.  相似文献   

5.
Damle MS  Giri AP  Sainani MN  Gupta VS 《Phytochemistry》2005,66(22):2659-2667
Tomato (Lycopersicon esculentum, Mill; cultivar- Dhanashree) proteinase inhibitors (PIs) were tested for their trypsin inhibitory (TI) and Helicoverpa armigera gut proteinases inhibitory (HGPI) activity in different organs of the tomato plants. Analysis of TI and HGPI distribution in various parts of the plant showed that flowers accumulated about 300 and 1000 times higher levels of TI while 700 and 400 times higher levels of HGPI as compared to those in leaves and fruits, respectively. Field observation that H. armigera larvae infest leaves and fruits but not the flowers could be at least partially attributed to the protective role-played by the higher levels of PIs in the flower tissue. Tomato PIs inhibited about 50-80% HGP activity of H. armigera larvae feeding on various host plants including tomato, of larvae exposed to non-host plant PIs and of various larval instars. Tomato PIs were found to be highly stable to insect proteinases wherein incubation of inhibitor with HGP even for 3h at optimum conditions did not affect inhibitory activity. Bioassay using H. armigera larvae fed on artificial diet containing tomato PIs revealed adverse effect on larval growth, pupae development, adult formation and fecundity.  相似文献   

6.
棉铃虫5型质型多角体病毒属于呼肠孤病毒科质型多角体病毒属,以重要农业害虫棉铃虫为其天然宿主,对棉铃虫的生物控制具有重要意义.本文对棉铃虫5型质型多角体病毒第3片段编码的蛋白的功能进行了初步研究.首先通过同源性对比,推测其所编码的蛋白可能行使RNA依赖的RNA聚合酶(RdRP)的功能.通过体外活性研究确定了该蛋白的RdRP活性,并确定了其保守活性位点GDD.随后以病毒基因组RNA和3′-OH封闭的病毒基因组RNA为模板,利用Northern blot方法研究该蛋白起始病毒基因组RNA合成的分子机制.结果表明,该病毒的RdRP主要通过引物非依赖的方式起始病毒基因组RNA的合成,并且该RdRP蛋白并不具有末端转移酶活性.最后,对RdRP行使功能的生化条件进行探索,发现RdRP功能的发挥需要二价金属离子Mg2+的存在.  相似文献   

7.
8.
9.
Disruption of the Ha_BtR (a cadherin gene) is genetically linked to resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in the GYBT strain of Helicoverpa armigera. Brush border membrane vesicles (BBMVs) prepared from midguts of both the Cry1Ac-resistant GYBT strain (homozygous for a deletion knockout of Ha_BtR) and the susceptible GY strain (homozygous for the wild type of Ha_BtR) possessed saturable and specific binding ability to (125)I-Cry1Ac. The binding constant (K(d)) of the GY strain was significantly lower than that of the resistant GYBT strain, whereas their binding site concentrations (B(max)) were similar. When midgut BBMVs were reacted directly with streptavidin conjugated to horseradish peroxidase, the GY strain had very clear 120- and 85-kDa protein bands, which indicated that the 120- and 85-kDa bands are endogenous biotin-containing proteins. However, the GYBT strain almost completely lost these two biotin-containing proteins. Ligand blotting with biotinylated Cry1Ac toxin showed midgut BBMVs of the GY strain contain five protein bands of 210-, 190-, 150-, 120-, and 85-kDa, respectively, while BBMVs of the GYBT strain contain only two protein bands of 150- and 120-kDa. 120-kDa bands may consist of two proteins with coincidentally the same molecular weight (putatively, an APN and a biotin-containing protein). Our results showed that the binding pattern of Cry1Ac to midgut BBMVs of H. armigera was altered quantitatively and qualitatively by knockout of Ha_BtR. There are multiple Cry1Ac-binding proteins in the midgut of susceptible H. armigera, but only the Ha_BtR can be considered as a putative functional receptor of Cry1Ac. Possible involvement of other receptor proteins in the intoxication process in vivo could not be excluded.  相似文献   

10.
11.
12.
The effects of transgenic Bt cotton on the overwintering generation of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), are unknown. We hypothesized that a Bt cotton diet may adversely affect fitness of this generation and examined fresh weight, lipids, glycogens, low-molecular-weight sugars and SCPs (supercooling points) of pupae, as well as survival of larvae, diapausing pupae and adult emergence in comparison with controls. Field and laboratory experiments showed that larvae fed on Bt cotton had a decreased pupation rate, and fewer entered diapause and emerged as adults compared with larvae fed non-Bt cotton. Furthermore, larvae fed Bt cotton had reduced pupal weight, glycogen content and trehalose levels both in diapausing and in non-diapausing pupae, and only diapausing pupae had an increased SCP compared to controls. The SCPs of diapausing pupae reared on Bt cotton were significantly higher than those reared on non-Bt cotton. The trehalose levels of diapausing pupae reared on Bt cotton were significantly lower than those of larvae reared on non-Bt cotton. Thus, these results suggest that a Bt cotton diet weakens the preparedness of cotton bollworm for overwintering and reduces survival of the overwintering generation, which will in turn reduce the density of the first generation in the following year. Effects of transgenic Bt cotton on the overwintering generation of cotton bollworm appear to have significantly contributed to the suppression of cotton bollworm observed throughout northern China in the past decade.  相似文献   

13.
Herbivorous insects have more difficulty obtaining proteins from their food than do predators and parasites. The scarcity of proteins in their diet requires herbivores to feed voraciously, thus heavily damaging their host plants. Plants respond to herbivory by producing defense compounds, which reduce insect growth, retard development, and increase mortality. Herbivores use both pre- and postdigestive response mechanisms to detect and avoid plant defense compounds. Proteinase inhibitors (PIs) are one example of plant compounds produced as a direct defense against herbivory. Many insects can adapt to PIs when these are incorporated into artificial diets. However, little is known about the effect of PIs on diet choice and feeding behavior. We monitored the diet choice, life-history traits, and gut proteinase activity of Helicoverpa armigera larvae using diets supplemented with synthetic and natural PIs. In choice experiments, both neonates and fourth-instar larvae preferred the control diet over PI-supplemented diets, to varying degrees. Larvae that fed on PI-supplemented diets weighed less than those that fed on the control diet and produced smaller pupae. Trypsin-specific PIs had a stronger effect on mean larval weight than did other PIs. A reduction of trypsin activity but not of chymotrypsin activity was observed in larvae fed on PI-supplemented diets. Therefore, behavioral avoidance of feeding on plant parts high in PIs could be an adaptation to minimize the impact of this plant's defensive strategy.  相似文献   

14.
The cotton bollworm, Helicoverpa armigera, is one of the most important insect pests in cotton growing regions of China. Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been deployed for combating cotton bollworm since 1997. Natural refugees derived from the mixed planting system consisting of cotton, corn, soybean, vegetables, peanut and others on single-family farms of a small scale were used for delaying the evolution of resistance to Bt cotton. Susceptibility of H. armigera field populations to the Bt insecticidal protein Cry1Ac was monitored from 1997 to 2006. The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.  相似文献   

15.
Male insect accessory glands contain factors that are transferred during mating to the female, some inducing post-mating behavior, including the cessation of pheromone production, non-receptivity and the initiation of oviposition. One such factor is the Drosophila melanogaster sex-peptide (DrmSP). A pheromone suppression peptide, termed HezPSP, was identified in the moth Helicoverpa zea, isolated by HPLC and the active peak sequenced, but the activity of the synthesized peptide has not been reported to date. HezPSP bears no sequence homology to DrmSP. However, both peptides contain a disulfide bridge separated by an equal number, but dissimilar, amino acids. We herein report on the pheromonostatic activity of HezPSP partial peptides in the moth Helicoverpa armigera.  相似文献   

16.
Transmission plays a central role in the ecology of baculoviruses and the population dynamics of their hosts. Here, we report on the horizontal and vertical transmission dynamics of wild-type Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV-WT) and a genetically modified variant (HaSNPV-AaIT) with enhanced speed of action through the expression of an insect-selective scorpion toxin (AaIT). In caged field plots, horizontal transmission of both HaSNPV variants was greatest when inoculated 3rd instar larvae were used as infectors, transmission was intermediate with 2nd instar infectors and lowest with 1st instar infectors. Transmission was greater at a higher density of infectors (1 per plant) than at a lower density (1 per 4 plants); however, the transmission coefficient (number of new infections per initial infector) was lower at the higher density of infectors than at the lower density. HaSNPV-AaIT exhibited a significantly lower rate of transmission than HaSNPV-WT in the field cages. This was also the case in open field experiments. In the laboratory, the vertical transmission of HaSNPV-AaIT from infected females to offspring of 16.7+/-2.1% was significantly lower than that of HaSNPV-WT (30.9+/-2.9%). Likewise, in the field, vertical transmission of HaSNPV-AaIT (8.4+/-1.1%) was significantly lower than that of HaSNPV-WT (12.6+/-2.0%). The results indicate that the recombinant virus will be transmitted at lower rates in H. armigera populations than the wild-type virus. This may potentially affect negatively its long-term efficacy as compared to wild-type virus, but contributing positively to its biosafety.  相似文献   

17.
18.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

19.
20.
Abstract  Bitter gourd ( Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs), which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera . In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-II, its cloning and expression as a recombinant protein using Pichia pastoris have been reported. Recombinant McTI-II inhibited bovine trypsin at 1: 1 molar ratio, as expected, but did not inhibit chymotrypsin or elastase. McTI-II also strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H. armigera larvae. The insect larvae fed with McTI-II-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding. Moreover, ingestion of McTI-II resulted in 23% mortality in the larval population. The strong antimetabolic activity of McTI-II toward H. armigera indicates its probable use in developing insect tolerance in susceptible plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号