首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The super-relaxed state of myosin (SRX), in which the myosin ATPase activity is strongly inhibited, has been observed in a variety of muscle types. It has been proposed that myosin heads in this state are inhibited by binding to the core of the thick filament in a structure known as the interacting-heads motif. The myosin inhibitor blebbistatin has been shown in structural studies to stabilize the binding of myosin heads to the thick filament, and here we have utilized measurements of single ATP turnovers to show that blebbistatin also stabilizes the SRX in both fast and slow skeletal muscle, providing further support for the proposal that myosin heads in the SRX are also in the interacting-heads motif. We find that the SRX is stabilized using blebbistatin even in conditions that normally destabilize it, e.g., rigor ADP. Using blebbistatin we show that spin-labeled nucleotides bound to myosin have an oriented spectrum in the SRX in both slow and fast skeletal muscle. This is to our knowledge the first observation of oriented spin probes on the myosin motor domain in relaxed skeletal muscle fibers. The spectra for skeletal muscle with blebbistatin are similar to those observed in relaxed tarantula fibers in the absence of blebbistatin, demonstrating that the structure of the SRX is similar in different muscle types and in the presence and absence of blebbistatin. The mobility of spin probes attached to nucleotides bound to myosin shows that the conformation of the nucleotide site is closed in the SRX.  相似文献   

2.
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.  相似文献   

3.
In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads.  相似文献   

4.
We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate, as monitored by the decrease in fluorescence when 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (∼ 30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif,” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations.  相似文献   

5.
The super-relaxed (SRX) state of myosin was only recently reported in striated muscle. It is characterised by a sub-population of myosin heads with a highly inhibited rate of ATP turnover. Myosin heads in the SRX state are bound to each other along the thick filament core producing a highly ordered arrangement. Upon activation, these heads project into the interfilament space where they can bind to the actin filaments. Thus far, the population and lifetimes of myosin heads in the SRX state have been characterised in rabbit cardiac, and fast and slow skeletal muscle, as well as in the skeletal muscle of the tarantula. These studies suggest that the role of SRX in cardiac and skeletal muscle regulation is tailored to their specific functions. In skeletal muscle, the SRX modulates the resting metabolic rate. Cardiac SRX represents a “reserve” of inactive myosin heads that may protect the heart during times of stress, e.g. hypoxia and ischaemia. These heads may also be called up when there is a sustained demand for increased power. The SRX in cardiac muscle provides a potential target for novel therapies.  相似文献   

6.
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 μM blebbistatin, disordering was at least 10 times slower. In the M·ADP state, myosin heads are also disordered. When blebbistatin was added to M·ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction.  相似文献   

7.
The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, “free” and “blocked”, formed an asymmetric structure named the “interacting-heads motif” (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca2+-activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.  相似文献   

8.
The mechanisms that control cardiac contractility are complex. Recent work we conducted in vertebrate skeletal muscle identified a new state of myosin, the super-relaxed state (SRX), which had a very low metabolic rate. To determine whether this state also exists in cardiac muscle we used quantitative epi-fluorescence to measure single nucleotide turnovers by myosin in bundles of relaxed permeable rabbit ventricle cells. We measured two turnover times—one compatible with the normal relaxed state, and one much slower which was shown to arise from myosin heads in the SRX. In both skeletal and cardiac muscle, the SRX appears to play a similar role in relaxed cells, providing a state with a very low metabolic rate. However, in active muscle the properties of the SRX differ dramatically. We observed a rapid transition of myosin heads out of the SRX in active skeletal fibers, whereas the population of the SRX remained constant in active cardiac cells. This property allows the SRX to play a very different role in cardiac muscle than in skeletal muscle. The SRX could provide a mechanism for decreasing the metabolic load on the heart, being cardioprotective, particularly in time of stress such as ischemia.  相似文献   

9.
The structure of glycerinated Lethocerus insect flight muscle fibers, relaxed by spin-labeled ATP and vanadate (Vi), was examined using X-ray diffraction, electron microscopy and electron paramagnetic resonance (e.p.r.) spectra. We obtained excellent relaxation of MgATP quality as determined by mechanical criteria, using vanadate trapping of 2' spin-labeled 3' deoxyATP at 3 degree C. In rigor fibers, when the diphosphate analog is bound in the absence of Vi, the probes on myosin heads are well-ordered, in agreement with electron microscopic and X-ray patterns showing that myosin heads are ordered when attached strongly to actin. In relaxed muscle, however, e.p.r. spectra report orientational disorder of bound (Vi-trapped) spin-labeled nucleotide, while electron microscopic and X-ray patterns both show well-ordered bridges at a uniform 90 degrees angle to the filament axis. The spin-labeled nucleotide orientation is highly disordered, but not completely isotropic; the slight anisotropy observed in probe spectra is consistent with a shift of approximately 10% of probes from angles close to 0 degrees to angles close to 90 degrees. Measurements of probe mobility suggest that the interaction between probe and protein remains as tight in relaxed fibers as in rigor, and thus that the disorder in relaxed fibers arises from disorders of (or within) the protein and not from disorder of the probe relative to the protein. Fixation of the relaxed fibers with glutaraldehyde did not alter any aspect of the spectrum of the Vi-trapped analog, including the slight order observed, showing that the extensive inter- and intra-molecular cross-linking of the first step of sample preparation for electron microscopy had not altered relaxed crossbridge orientations. Two models that may reconcile the apparently disparate results obtained on relaxed fibers are presented: (1) a rigid myosin head could possess considerable disorder in the regular array about the thick filament; or (2) the nucleotide site could be on a disordered, probably distal, domain of myosin, while a more proximal region is well ordered on the thick filament backbone. Our findings suggest that when e.p.r. probes signal disorder of a local site or domain, this is complementary, not contradictory, to signals of general order. The e.p.r. spectra show that a portion of the myosin molecule can be disordered at the same time as the X-ray diffraction and electron microscopy show the bulk of myosin head mass to be uniformly oriented and regularly arrayed.  相似文献   

10.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

11.
《Biophysical journal》2022,121(8):1354-1366
Electron microscopy (EM) shows that myosin heads in thick filaments isolated from striated muscles interact with each other and with the myosin tail under relaxing conditions. This “interacting-heads motif” (IHM) is highly conserved across the animal kingdom and is thought to be the basis of the super-relaxed state. However, a recent X-ray modeling study concludes, contrary to expectation, that the IHM is not present in relaxed intact muscle. We propose that this conclusion results from modeling with a thick filament 3D reconstruction in which the myosin heads have radially collapsed onto the thick filament backbone, not from absence of the IHM. Such radial collapse, by about 3–4 nm, is well established in EM studies of negatively stained myosin filaments, on which the reconstruction was based. We have tested this idea by carrying out similar X-ray modeling and determining the effect of the radial position of the heads on the goodness of fit to the X-ray pattern. We find that, when the IHM is modeled into a thick filament at a radius 3–4 nm greater than that modeled in the recent study, there is good agreement with the X-ray pattern. When the original (collapsed) radial position is used, the fit is poor, in agreement with that study. We show that modeling of the low-angle region of the X-ray pattern is relatively insensitive to the conformation of the myosin heads but very sensitive to their radial distance from the filament axis. We conclude that the IHM is sufficient to explain the X-ray diffraction pattern of intact muscle when placed at the appropriate radius.  相似文献   

12.
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.  相似文献   

13.
We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy of paramagnetic derivatives of ATP has been used to probe the angular distribution of myosin in glycerinated muscle fibers. Three nucleotide spin labels have been prepared with the nitroxide free radical moiety attached, via an ester linkage to either: the 2' or 3' positions of the ribose unit of ATP (SL-ATP), the 2' position of 3' deoxy ATP (2'SL-dATP), or the 3' position of 2' deoxy ATP (3'SL-dATP). In muscle fibers, these nucleotides are quickly hydrolyzed to their diphosphate forms. All three diphosphate analogues bind to the nucleotide site of myosin with similar affinities: rabbit psoas fibers, 7 X 10(3)/M; insect flight muscle, 5 X 10(3)/M; and rabbit soleus muscle, 2 X 10(4)/M. Analysis of the spectra showed that the principal z-axis of the nitroxide attached to bound nucleotides was oriented with respect to the filament axis. The principal axes of 3'SL-dADP and 2'SL-dADP appeared to be preferentially aligned at mean angles of 67 degrees +/- 4 degrees and 55 degrees +/- 5 degrees, respectively. The distribution of probes about these angles can be described by Gaussians with widths of 16 degrees +/- 4 degrees and 13 degrees +/- 5 degrees, respectively. The spectrum of bound SL-ADP was a linear combination of the spectra of the two deoxy analogues. These orientations were the same in the three muscle types examined, indicating a high degree of homology in the nucleotide binding site. Applying static strains as high as 0.2 N/mm2 to muscle fibers caused no change in the orientation of myosin-bound, spin-labeled nucleotides. When muscle fibers were stretched to decrease actin and myosin filament overlap, bound SL-ADP produced EPR spectra indicative of probes with a highly disordered angular distribution. Sodium vanadate and SL-ATP caused fiber stiffness to decrease, and the EPR spectrum of the bound analogue indicated an increase in the fraction of disoriented probes with a concomitant decrease in the fraction of oriented probes. These findings indicate that when myosin is bound to actin its nucleotide site is highly oriented relative to the fiber axis, and when this interaction is removed the orientation of the nucleotide site becomes highly disordered.  相似文献   

15.
The degree of helical order of the thick filament of mammalian skeletal muscle is highly dependent on temperature and the nature of the ligand. Previously, we showed that there was a close correlation between the conformation of the myosin heads on the surface of the thick filaments and the extent of their helical order. Helical order required the heads to be in the closed conformation. In addition, we showed that, with the same ligand bound at the active site, three conformations of myosin coexisted in equilibrium. Hitherto, however, there was no detectable helical order as measured by x-ray diffraction under the temperatures studied for myosin with MgADP and the nucleotide-free myosin, raising the possibility that the concept of multiple conformations has limited validity. In this study, blebbistatin was used to stabilize the closed conformation of myosin. The degree of helical order is substantially improved with MgATP at low temperature or with MgADP or in the absence of nucleotide. The thermodynamic parameters of the disorder↔order transition and the characteristics of the ordered array were not significantly altered by binding blebbistatin. The simplest explanation is that the binding of blebbistatin increases the proportion of myosin in the closed conformation from being negligible to substantial. These results provide further evidence for the coexistence of multiple conformations of myosin under a wide range of conditions and for the closed conformation being directly coupled to helical order.  相似文献   

16.
Raising the temperature of rabbit skeletal muscle from ∼0°C to ∼20°C has been shown to enhance the helical organization of the myosin heads and to change the intensities of the 10 and 11 equatorial reflections. We show here by time-resolved x-ray diffraction combined with temperature jump that the movement of the heads to enhance the organized myosin helix occurs at the same fast rate as the change in the intensities of the equatorial reflections. However, model calculations indicate that the change in the equatorials cannot be explained simply in terms of the movement of myosin heads. Analysis of electron micrographs of transverse sections of relaxed muscle fibers cryofixed at ∼5°C and ∼35°C shows that in addition to the reorganization of the heads the thin and thick filaments are less constrained to their positions in the hexagonal filament lattice in the warm muscle than in the cold. Incorporating the changes in filament order in model calculations reconciles these with the observed changes in equatorial reflections. We suggest the thin filaments in the cold muscle are boxed into their positions by the thermal movement of the disordered myosin heads. In the warmer muscle, the packed-down heads leave the thin filaments more room to diffuse laterally.  相似文献   

17.
Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.  相似文献   

18.
The interaction between actin and myosin in the filament array of glycerinated muscle fibers has been monitored using paramagnetic probes and mechanical measurements. Both fiber stiffness and the spectra of probes bound to a reactive sulfydral on the myosin head were measured as the actomyosin bond was weakened by addition of magnesium pyrophosphate (MgPPi) and glycerol. In the absence of MgPPi, all myosin heads are attached to actin with oriented probes. When fibers were incubated in buffers containing MgPPi, a fraction of the probes became disordered, and this effect was greater in the presence of glycerol. To determine whether the heads with disordered probes were detached from actin, spin-labeled myosin subfragment-1 (MSL-S1) was diffused into unlabeled fibers, and the fractions bound to actin and free in the medium were correlated with the oriented and disordered spectral components. These experiments showed that the label was oriented when MSL-S1 was attached to actin in a ternary complex with the ligand and that all heads with disordered probes were detached from actin. Thus the fraction of oriented labels could be used to determine the fraction of heads attached to actin in a fiber in the presence of ligand. The fraction of myosin heads attached to actin decreased with increasing [MgPPi], and in the absence of glycerol approximately 50% of the myosin heads were dissociated at 3.3 mM ligand with little change in fiber stiffness. In the presence of 37% glycerol plus ligand, up to 80% of the heads could be detached with a 50% decrease in fiber stiffness. The data indicate that there are two populations of myosin heads in the fiber. All the data could be fit with a model in which one population of myosin heads (comprising approximately 50% of the total) sees an apparent actin concentration of 0.1 mM and can be released from actin with little change in fiber stiffness. A second population of myosin heads (approximately 50%) sees a higher actin concentration (5 mM) and is only released in the presence of both glycerol and ligand.  相似文献   

19.
B Hambly  K Franks    R Cooke 《Biophysical journal》1992,63(5):1306-1313
We have measured the orientation of a region of the myosin head, close to the junction with the rod, during active force generation. Paramagnetic probes were attached specifically to a reactive cysteine (Cys 125) of purified myosin light chain 2 (LC2) and exchanged into myosin heads in glycerinated rabbit psoas muscle. Electron paramagnetic resonance spectroscopy was used to monitor the orientation of the probes. Previous work has shown that the LC2 bound spin probes are significantly ordered in rigor and muscle in the presence of adenosine diphosphate (ADP). In contrast, there is a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, all of the LC2 bound spin probes (98 +/- 1.6%) show an angular distribution similar to that of relaxed muscle. These findings contrast with results obtained from probes attached to Cys 707 on the cross-bridge, located close to the actin binding site, where, during active force generation, a proportion of the spin probes were ordered as in rigor, whereas the remaining probes were disordered as in relaxation. To test the hypothesis that this ordered component is due to modification of Cys 707, we measured the spectra obtained from probes attached to LC2 in fibers modified at Cys 707. The modification of Cys 707 did not produce an ordered component in these spectra. The absence of an ordered component at the LC2 site limits the populations of some states in active fibers. An actin/myosin/ADP state is thought to be the major force-producing state. Our present results show that the populations of states with ordered probes on LC2 are < 2% in active fibers; thus, the major force-producing state is different from the one obtained by addition of ADP to rigor fibers.  相似文献   

20.
In this work we examined the arrangement of cross-bridges on the surface of myosin filaments in the A-band of Lethocerus flight muscle. Muscle fibers were fixed using the tannic-acid-uranyl-acetate, ("TAURAC") procedure. This new procedure provides remarkably good preservation of native features in relaxed insect flight muscle. We computed 3-D reconstructions from single images of oblique transverse sections. The reconstructions reveal a square profile of the averaged myosin filaments in cross section view, resulting from the symmetrical arrangement of four pairs of myosin heads in each 14.5-nm repeat along the filament. The square profiles form a very regular right-handed helical arrangement along the surface of the myosin filament. Furthermore, TAURAC fixation traps a near complete 38.7 nm labeling of the thin filaments in relaxed muscle marking the left-handed helix of actin targets surrounding the thick filaments. These features observed in an averaged reconstruction encompassing nearly an entire myofibril indicate that the myosin heads, even in relaxed muscle, are in excellent helical register in the A-band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号