首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow.  相似文献   

4.
In general, gene-dependent translational progress affects the efficiency of protein expression. To evaluate the translational progress of protein synthesis, it is necessary to trace the time course of translation as well as the quantity of products. Here we present a new method for tracking translation steps in cell-free protein synthesis using atomic force microscopy (AFM). The cell-free protein synthesis system is useful to track the inherent translational progress of a target gene, whereas conventional UV absorption measurement coupled with density gradient fractionation is difficult to analyze such small sample quantities. Because the high resolution of AFM enables us to clearly count the number of ribosomes included in polysomes, polysome profiles can be obtained directly without complicated fractionation. With this method, we could elucidate the detailed polysome profile with only 1 μl of sample solution. We observed the translational progress of green fluorescent protein synthesis, a model of high-expression protein, as well as human retinoid X receptor. Detailed polysome profiles showed different patterns of translational progress and were clearly associated with the results of time-dependent protein expression. Our study suggests the possibility for comprehensive character analysis of inherent gene-dependent translational progress.  相似文献   

5.
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.  相似文献   

6.
7.
Translational control in stress and apoptosis   总被引:1,自引:0,他引:1  
Cells respond to stress stimuli through coordinated changes in gene expression. The regulation of translation is often used under these circumstances because it allows immediate and selective changes in protein levels. There are many examples of translational control in response to stress. Here we examine two representative models, the regulation of eukaryotic initiation factor-2alpha by phosphorylation and internal ribosome initiation through the internal ribosome-entry site, which illustrate the importance of translational control in the cellular stress response and apoptosis.  相似文献   

8.
Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the alpha subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2alpha, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha, inhibition of protein synthesis, stress granule formation, and survival.  相似文献   

9.
The eukaryotic initiation factor (eIF) 4G family plays a central role during translation initiation, bridging between the 5' and 3' ends of the mRNA via its N-terminal third while recruiting other factors and ribosomes through its central and C-terminal third. The protein p97/NAT1/DAP5 is homologous to the central and C-terminal thirds of eIF4G. p97 has long been considered to be a translational repressor under normal cellular conditions. Further, caspase cleavage liberates a p86 fragment that is thought to mediate cap-independent translation in apoptotic cells. We report here that, surprisingly, human p97 is polysome associated in proliferating cells and moves to stress granules in stressed, nonapoptotic cells. Tethered-function studies in living cells show that human p97 and p86 both can activate translation; however, we were unable to detect polysome association of p86 in apoptotic cells. We further characterized the zebrafish orthologs of p97, and found both to be expressed throughout embryonic development. Their simultaneous knockdown by morpholino injection led to impaired mesoderm formation and early embryonic lethality, indicating conservation of embryonic p97 function from fish to mammals. These data indicate that full-length p97 is a translational activator with essential role(s) in unstressed cells, suggesting a reassessment of current models of p97 function.  相似文献   

10.
11.
12.
13.
14.
Previous work has suggested that increased phosphorylation of eukaryotic initiation factor (eIF) 4E at Ser-209 in the C-terminal loop of the protein often correlates with increased translation rates. However, the functional consequences of phosphorylation have remained contentious with our understanding of the role of eIF4E phosphorylation in translational control far from complete. To investigate the role for eIF4E phosphorylation in de novo translation, we studied the recovery of human kidney cells from hypertonic stress. Results show that hypertonic shock caused a rapid inhibition of protein synthesis and the disaggregation of polysomes. These changes were associated with the dephosphorylation of eIF4G, eIF4E, 4E-binding protein 1 (4E-BP1), and ribosomal protein S6. In addition, decreased levels of the eIF4F complex and increased association of 4E-BP1 with eIF4E were observed over a similar time course. The return of cells to isotonic medium rapidly promoted the phosphorylation of these initiation factors, increased levels of eIF4F complexes, promoted polysome assembly, and increased rates of translation. However, by using a cell-permeable, specific inhibitor of eIF4E kinase, Mnk1 (CGP57380), we show that de novo initiation of translation and eIF4F complex assembly during this recovery phase did not require eIF4E phosphorylation.  相似文献   

15.
16.
Poor oxygenation (hypoxia) is present in the majority of human tumors and is associated with poor prognosis due to the protection it affords to radiotherapy and chemotherapy. Hypoxia also elicits multiple cellular response pathways that alter gene expression and affect tumor progression, including two recently identified separate pathways that strongly suppress the rates of mRNA translation during hypoxia. The first pathway is activated extremely rapidly and is mediated by phosphorylation and inhibition of the eukaryotic initiation factor 2alpha. Phosphorylation of this factor occurs as part of a coordinated endoplasmic reticulum stress response program known as the unfolded protein response and activation of this program is required for hypoxic cell survival and tumor growth. Translation during hypoxia is also inhibited through the inactivation of a second eukaryotic initiation complex, eukaryotic initiation factor 4F. At least part of this inhibition is mediated through a Redd1 and tuberous sclerosis complex 1/2-dependent inhibition of the mammalian target of rapamycin kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia-induced proteins. Consequently, both arms of translational control during hypoxia influence gene expression and phenotype. These hypoxic response pathways show differential activation requirements that are dependent on the level of oxygenation and duration of hypoxia and are themselves highly dynamic. Thus, the severity and duration of hypoxia can lead to different biological and therapeutic consequences.  相似文献   

17.
The protein kinase PERK couples protein folding in the endoplasmic reticulum (ER) to polypeptide biosynthesis by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha), attenuating translation initiation in response to ER stress. PERK is highly expressed in mouse pancreas, an organ active in protein secretion. Under physiological conditions, PERK was partially activated, accounting for much of the phosphorylated eIF2alpha in the pancreas. The exocrine and endocrine pancreas developed normally in Perk-/- mice. Postnatally, ER distention and activation of the ER stress transducer IRE1alpha accompanied increased cell death and led to progressive diabetes mellitus and exocrine pancreatic insufficiency. These findings suggest a special role for translational control in protecting secretory cells from ER stress.  相似文献   

18.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.Key words: ribosome, translation, stress, starvation, polysome  相似文献   

19.
20.
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号