首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs) in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients with mild cognitive impairment (MCI) and Alzheimer''s disease (AD). We performed a cross-sectional study comparing patients with subsyndromal depression and nondepressed controls with normal cognition (n = 59), MCI (n = 27), and AD (n = 27), adjusting for sex, age, years of education, and results of the Mini-Mental State Examination. Frontal WML volume was greater, and right medial orbitofrontal cortical volume was smaller in cognitively normal participants with subsyndromal depression than in those without subsyndromal depression. No volume differences were observed in medial prefrontal, limbic, or WML volumes according to the presence of subsyndromal depression in cognitively impaired patients. The absence of these changes in patients with MCI and AD suggests that brain changes associated with AD pathology may override the changes associated with subsyndromal depression.  相似文献   

2.

Background

Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people.

Methods

In a population-based study, participants aged >60 years without Parkinson''s disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait.

Results

There were 305 participants, mean age 71.4 (6.9) years, 54% male, mean gait speed 1.16 (0.22) m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001) and step length (p<0.001), but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates.

Conclusion

Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.  相似文献   

3.
Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.  相似文献   

4.
BackgroundVery few studies have explored the patterns of cardiovascular health (CVH) metrics in midlife and late life in relation to risk of dementia. We examined the associations of composite CVH metrics from midlife to late life with risk of incident dementia.Methods and findingsThis cohort study included 1,449 participants from the Finnish Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) study, who were followed from midlife (baseline from1972 to 1987; mean age 50.4 years; 62.1% female) to late life (1998), and then 744 dementia-free survivors were followed further into late life (2005 to 2008). We defined and scored global CVH metrics based on 6 of the 7 components (i.e., smoking, physical activity, and body mass index [BMI] as behavioral CVH metrics; fasting plasma glucose, total cholesterol, and blood pressure as biological CVH metrics) following the modified American Heart Association (AHA)’s recommendations. Then, the composite global, behavioral, and biological CVH metrics were categorized into poor, intermediate, and ideal levels. Dementia was diagnosed following the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. Data were analyzed with Cox proportional hazards and the Fine and Gray competing risk regression models. During the follow-up examinations, dementia was diagnosed in 61 persons in 1998 and additional 47 persons in 2005 to 2008. The fully adjusted hazard ratio (HR) of dementia was 0.71 (95% confidence interval [CI]: 0.43, 1.16; p = 0.174) and 0.52 (0.29, 0.93; p = 0.027) for midlife intermediate and ideal levels (versus poor level) of global CVH metrics, respectively; the corresponding figures for late-life global CVH metrics were 0.60 (0.22, 1.69; p = 0.338) and 0.91 (0.34, 2.41; p = 0.850). Compared with poor global CVH metrics in both midlife and late life, the fully adjusted HR of dementia was 0.25 (95% CI: 0.08, 0.86; p = 0.028) for people with intermediate global CVH metrics in both midlife and late life and 0.14 (0.02, 0.76; p = 0.024) for those with midlife ideal and late-life intermediate global CVH metrics. Having an intermediate or ideal level of behavioral CVH in both midlife and late life (versus poor level in both midlife and late life) was significantly associated with a lower dementia risk (HR range: 0.03 to 0.26; p < 0.05), whereas people with midlife intermediate and late-life ideal biological CVH metrics had a significantly increased risk of dementia (p = 0.031). Major limitations of this study include the lack of data on diet and midlife plasma glucose, high rate of attrition, as well as the limited power for certain subgroup analyses.ConclusionsIn this study, we observed that having the ideal CVH metrics, and ideal behavioral CVH metrics in particular, from midlife onwards is associated with a reduced risk of dementia as compared with people having poor CVH metrics. Maintaining life-long health behaviors may be crucial to reduce late-life risk of dementia.

Yajun Liang and colleagues investigate the association between cardiovascular health throughout life and risk of dementia.  相似文献   

5.
ABSTRACT: BACKGROUND: To test the hypothesis that white matter lesions (WML) are primarily associated with regional frontal cortical volumes, and to determine the mediating effects of these regional frontal cortices on the associations of WML with depressive symptoms and cognitive dysfunction. METHODS: Structural brains MRIs were performed on 161 participants: cognitively normal, cognitive impaired but not demented, and demented participants. Lobar WML volumes, regional frontal cortical volumes, depressive symptom severity, and cognitive abilities were measured. Multiple linear regression analyses were used to identify WML volume effects on frontal cortical volume. Structural equation modeling was used to determine the MRI-depression and the MRI-cognition path relationships. RESULTS: WML predicted frontal cortical volume, particularly in medial orbirtofrontal cortex, irrespective of age, gender, education, and group status. WML directly predicted depressive score, and this relationship was not mediated by regional frontal cortices. In contrast, the association between WML and cognitive function was indirect and mediated by regional frontal cortices. CONCLUSIONS: These findings suggest that the neurobiological mechanisms underpinning depressive symptoms and cognitive dysfunction in older adults may differ.  相似文献   

6.
In cross-sectional studies periventricular white matter lesions (WML) were related to low plasma levels of vitamin B12. Whether low vitamin B12 levels are also related to progression of WML is still unknown. We studied baseline vitamin B12 levels and its association with progression of WML over 2 years of follow-up in first-ever lacunar stroke patients. In 107 first-ever lacunar stroke patients in whom baseline brain MRI and vitamin B12 status were available, we obtained a follow-up brain MRI after 2 years. We assessed progression of periventricular WML (pWML) and deep WML (dWML) using a visual WML change scale. We studied the relationship between baseline levels of plasma vitamin B12 and progression of WML after 2 years of follow-up by binary logistic regression analyses. Vitamin B12 deficiency was more frequent in patients with progression of pWML compared to those without progression (41.9% and 19.7% respectively, p = 0.02). Corrected for sex and age, progression of pWML was associated with lower baseline levels of vitamin B12 (OR 1.42 per 50 unit decrease, 95% CI 1.00-1.92). Vitamin B12 levels were not associated with progression of dWML. In conclusion progression of pWML after 2 years of follow-up relates to low levels of vitamin B12 at baseline in first-ever lacunar stroke patients. Whether this population could benefit from vitamin B12 supplementation is unknown and requires further investigation.  相似文献   

7.
Within systemic lupus erythematosus (SLE) patients can be divided into groups with and without central nervous system involvement, the latter being subcategorized as neuropsychiatric systemic lupus erythematosus (NPSLE). While a number of research groups have investigated NPSLE, there remains a lack of consistent application of this diagnostic criteria within neuroimaging studies. Previous neuroimaging research suggests that SLE patients have reduced subcortical and regional gray matter volumes when compared to controls, and that these group differences may be driven by SLE patients with neuropsychiatric symptoms. The current study sought to compare measures of cortical thickness and subcortical structure volume between NPSLE, SLE, and healthy controls. We hypothesized that patients with NPSLE (N = 21) would have thinner cortex and reduced subcortical gray matter volumes when compared to SLE (N = 16) and control subjects (N = 21). All subjects underwent MRI examinations on a 1.5 Tesla Siemens Sonata scanner. Anatomical reconstruction and segmentation were performed using the FreeSurfer image analysis suite. Cortical and subcortical volumes were extracted from FreeSurfer and analyzed for group differences, controlling for age. The NPSLE group exhibited decreased cortical thickness in clusters of the left frontal and parietal lobes as well as in the right parietal and occipital lobes compared to control subjects. Compared to the SLE group, the NPSLE group exhibited comparable thinning in clusters of the frontal and temporal lobes. Controlling for age, we found that between group effects for subcortical gray matter structures were significant for the thalamus (F = 3.06, p = .04), caudate nucleus (F = 3.19, p = .03), and putamen (F = 4.82, p = .005). These results clarify previous imaging work identifying cortical atrophy in a mixed SLE and NPSLE group, and suggest that neuroanatomical abnormalities are specific to SLE patients diagnosed with neuropsychiatric symptoms. Future work should help elucidate the underlying mechanisms underlying the emerging neurobiological profile seen in NPSLE, as well as clarify the apparent lack of overlap between cortical thinning and functional activation results and other findings pointing to increased functional activation during cognitive tasks.  相似文献   

8.
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development.In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development.  相似文献   

9.
Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex patterns of cortical differences using both surface area and thickness. In addition, correlation results implicate specific brain regions in levels of anxiety in WS, consistent with previous reports investigating general anxiety disorders in the general population.  相似文献   

10.

Background

Alzheimer''s disease (AD) and its transitional state mild cognitive impairment (MCI) are characterized by amyloid plaque and tau neurofibrillary tangle (NFT) deposition within the cerebral neocortex and neuronal loss within the hippocampal formation. However, the precise relationship between pathologic changes in neocortical regions and hippocampal atrophy is largely unknown.

Methodology/Principal Findings

In this study, combining structural MRI scans and automated image analysis tools with reduced cerebrospinal fluid (CSF) Aß levels, a surrogate for intra-cranial amyloid plaques and elevated CSF phosphorylated tau (p-tau) levels, a surrogate for neocortical NFTs, we examined the relationship between the presence of Alzheimer''s pathology, gray matter thickness of select neocortical regions, and hippocampal volume in cognitively normal older participants and individuals with MCI and AD (n = 724). Amongst all 3 groups, only select heteromodal cortical regions significantly correlated with hippocampal volume. Amongst MCI and AD individuals, gray matter thickness of the entorhinal cortex and inferior temporal gyrus significantly predicted longitudinal hippocampal volume loss in both amyloid positive and p-tau positive individuals. Amongst cognitively normal older adults, thinning only within the medial portion of the orbital frontal cortex significantly differentiated amyloid positive from amyloid negative individuals whereas thinning only within the entorhinal cortex significantly discriminated p-tau positive from p-tau negative individuals.

Conclusions/Significance

Cortical Aβ and tau pathology affects gray matter thinning within select neocortical regions and potentially contributes to downstream hippocampal degeneration. Neocortical Alzheimer''s pathology is evident even amongst older asymptomatic individuals suggesting the existence of a preclinical phase of dementia.  相似文献   

11.

Background

Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.

Methods

We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.

Results

We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.

Conclusions

Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.  相似文献   

12.
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development.  相似文献   

13.
The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%–34% of the variance in IQ, in comparison to 11%–16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.  相似文献   

14.
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations.  相似文献   

15.
Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18–25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11–13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure.  相似文献   

16.

Objective

To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI.

Methods

Fifty TIA/stroke patients with ipsilateral 30–69% carotid stenosis underwent MRI of the plaque at baseline. Total plaque volume and markers of vulnerability to thromboembolism (lipid-rich necrotic core [LRNC] volume, fibrous cap [FC] status, and presence of intraplaque hemorrhage [IPH]) were assessed. All patients also underwent brain MRI at baseline and after one year. Ipsilateral cerebral WMLs were quantified with a semiautomatic method.

Results

Mean WML volume significantly increased over a one-year period (6.52 vs. 6.97 mm3, P = 0.005). WML volume at baseline and WML progression did not significantly differ (P>0.05) between patients with 30–49% and patients with 50–69% stenosis. There was a significant correlation between total plaque volume and baseline ipsilateral WML volume (Spearman ρ = 0.393, P = 0.005). There was no significant correlation between total plaque volume and ipsilateral WML progression. There were no significant associations between LRNC volume and WML volume at baseline and WML progression. WML volume at baseline and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC. WML volume at baseline and WML progression also did not significantly differ between patients with and without IPH.

Conclusion

The results of this study indicate that carotid plaque burden is significantly associated with WML severity, but that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs.  相似文献   

17.
Liu Y  Li YJ  Luo EP  Lu HB  Yin H 《PloS one》2012,7(6):e39025
Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD.  相似文献   

18.

Background

Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level – BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy.

Methodology/Principal Findings

Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2–6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions.

Conclusions

Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.  相似文献   

19.
ObjectiveStructural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Hypotheses: Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum).MethodsWe conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.ResultsFemale adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.ConclusionsFemale adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.  相似文献   

20.
MRI diffusion tensor imaging (DTI) studies of white matter integrity in behavioral variant frontotemporal dementia have consistently shown involvement of frontal and temporal white matter, corresponding to regional loss of cortical volume. Volumetric imaging has a suboptimal sensitivity as a diagnostic tool and thus we wanted to explore if DTI is a better method to discriminate patients and controls than volumetric imaging. We examined the anterior cingulum bundle in 14 patients with behavioral variant frontotemporal dementia and 22 healthy controls using deterministic manual diffusion tensor tractography, and compared DTI parameters with two measures of cortical atrophy, VBM and cortical thickness, of the anterior cingulate cortex (ACC). Statistically significant changes between patients and controls were detected in all DTI parameters, with large effect sizes. ROC-AUC was for the best DTI parameters: 0.92 (fractional anisotropy) to 0.97 (radial diffusivity), 0.82 for the best cortical parameter, VBM of the ACC. Results from the AUC were confirmed with binary logistic regression analysis including demographic variables, but only for fractional anisotropy and mean diffusivity. Ability to classify patient/nonpatient status was significantly better for mean diffusivity vs. VBM (p=0.031), and borderline significant for fractional anisotropy vs. VBM (p=0.062). The results indicate that DTI could offer advantages in comparison with the assessment of cortical volume in differentiating patients with behavioral variant frontotemporal dementia and controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号