首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Prostate cancer is the most prevalent cancer in US and European men and the second leading cause of cancer death in those populations. It is somewhat unique in that nearly all patients who succumb to the disease will ultimately develop bone metastasis. Morbidity from bone metastasis-referred to as skeletal-related events, which include fractures, cord compression, radiation to bone, and surgery to bone—leads to significant costs and impaired quality of life. This article reviews three agents and the roles they play in the ever-changing armamentarium of treatments for metastatic castrate-resistant prostate cancer (mCRPC). The potential benefits of these agents are discussed, as well as the continuing use of these agents and their earlier introduction in the patient with progressive mCRPC with bone metastasis.Key words: Metastatic castrate-resistant prostate cancer, Skeletal-related events, Bone metastasis, Zoledronic acid, Denosumab, Radium Ra 223 dichlorideProstate cancer is the most prevalent cancer in US and European men and the second leading cause of cancer death in those populations. It is somewhat unique in that nearly all patients who have the disease will ultimately develop bone metastasis.1 Morbidity from bone metastasis—referred to as skeletal—related events (SREs), which include fractures, cord compression, radiation to bone, and surgery to bone-leads to significant costs and impaired quality of life. An estimated 241,740 men are diagnosed with prostate cancer each year in the United States1; between 9.5% and 17.8% of these patients have M0 + M1 castrate-resistant prostate cancer (CRPC).2,3Skeletal tumor burden and fracture are both independent predictors of death in men with metastatic CRPC (mCRPC).2,3 In addition, pain is an independent prognosticator for death4; thus, agents that reduce pain may improve quality as well as quantity of life. In the past decade, three new agents have been approved in the United States for the treatment and/or prevention of SREs in men with mCRPC. However, urologists continue to under-treat this condition.5 A recent clinical trial that screened a large population of men thought to have CRPC without metastasis found nearly one third of patients to have metastatic prostate cancer.6 And a recent large clinical trial in men with mCRPC, most of whom had bone metastases, showed fewer than 50% of patients were receiving a bisphosphonate.7This article reviews these three agents and the new roles they play in the ever-changing armamentarium of treatments for mCRPC. The potential benefits of these agents are discussed, as well as the continuing use of these agents and their earlier introduction in the patient with progressive mCRPC with bone metastasis.  相似文献   

2.
Quantitative proteome analyses suggest that the well-established stain colloidal Coomassie Blue, when used as an infrared dye, may provide sensitive, post-electrophoretic in-gel protein detection that can rival even Sypro Ruby. Considering the central role of two-dimensional gel electrophoresis in top-down proteomic analyses, a more cost effective alternative such as Coomassie Blue could prove an important tool in ongoing refinements of this important analytical technique. To date, no systematic characterization of Coomassie Blue infrared fluorescence detection relative to detection with SR has been reported. Here, seven commercial Coomassie stain reagents and seven stain formulations described in the literature were systematically compared. The selectivity, threshold sensitivity, inter-protein variability, and linear-dynamic range of Coomassie Blue infrared fluorescence detection were assessed in parallel with Sypro Ruby. Notably, several of the Coomassie stain formulations provided infrared fluorescence detection sensitivity to <1 ng of protein in-gel, slightly exceeding the performance of Sypro Ruby. The linear dynamic range of Coomassie Blue infrared fluorescence detection was found to significantly exceed that of Sypro Ruby. However, in two-dimensional gel analyses, because of a blunted fluorescence response, Sypro Ruby was able to detect a few additional protein spots, amounting to 0.6% of the detected proteome. Thus, although both detection methods have their advantages and disadvantages, differences between the two appear to be small. Coomassie Blue infrared fluorescence detection is thus a viable alternative for gel-based proteomics, offering detection comparable to Sypro Ruby, and more reliable quantitative assessments, but at a fraction of the cost.Gel electrophoresis is an accessible, widely applicable and mature protein resolving technology. As the original top-down approach to proteomic analyses, among its many attributes the high resolution achievable by two dimensional gel-electrophoresis (2DE)1 ensures that it remains an effective analytical technology despite the appearance of alternatives. However, in-gel detection remains a limiting factor for gel-based analyses; available technology generally permits the detection and quantification of only relatively abundant proteins (35). Many critical components in normal physiology and also disease may be several orders of magnitude less abundant and thus below the detection threshold of in-gel stains, or indeed most techniques. Pre- and post-fractionation technologies have been developed to address this central issue in proteomics but these are not without limitations (15). Thus improved detection methods for gel-based proteomics continue to be a high priority, and the literature is rich with different in-gel detection methods and innovative improvements (634). This history of iterative refinement presents a wealth of choices when selecting a detection strategy for a gel-based proteomic analysis (35).Perhaps the best known in-gel detection method is the ubiquitous Coomassie Blue (CB) stain; CB has served as a gel stain and protein quantification reagent for over 40 years. Though affordable, robust, easy to use, and compatible with mass spectrometry (MS), CB staining is relatively insensitive. In traditional organic solvent formulations, CB detects ∼ 10 ng of protein in-gel, and some reports suggest poorer sensitivity (27, 29, 36, 37). Sensitivity is hampered by relatively high background staining because of nonspecific retention of dye within the gel matrix (32, 36, 38, 39). The development of colloidal CB (CCB) formulations largely addressed these limitations (12); the concentration of soluble CB was carefully controlled by sequestering the majority of the dye into colloidal particles, mediated by pH, solvent, and the ionic strength of the solution. Minimizing soluble dye concentration and penetration of the gel matrix mitigated background staining, and the introduction of phosphoric acid into the staining reagent enhanced dye-protein interactions (8, 12, 40), contributing to an in-gel staining sensitivity of 5–10 ng protein, with some formulations reportedly yielding sensitivities of 0.1–1 ng (8, 12, 22, 39, 41, 42). Thus CCB achieved higher sensitivity than traditional CB staining, yet maintained all the advantages of the latter, including low cost and compatibility with existing densitometric detection instruments and MS. Although surpassed by newer methods, the practical advantages of CCB ensure that it remains one of the most common gel stains in use.Fluorescent stains have become the routine and sensitive alternative to visible dyes. Among these, the ruthenium-organometallic family of dyes have been widely applied and the most commercially well-known is Sypro Ruby (SR), which is purported to interact noncovalently with primary amines in proteins (15, 18, 19, 43). Chief among the attributes of these dyes is their high sensitivity. In-gel detection limits of < 1 ng for some proteins have been reported for SR (6, 9, 14, 44, 45). Moreover, SR staining has been reported to yield a greater linear dynamic range (LDR), and reduced interprotein variability (IPV) compared with CCB and silver stains (15, 19, 4649). SR is easy to use, fully MS compatible, and relatively forgiving of variations in initial conditions (6, 15). The chief consequence of these advances remains high cost; SR and related stains are notoriously expensive, and beyond the budget of many laboratories. Furthermore, despite some small cost advantage relative to SR, none of the available alternatives has been consistently and quantitatively demonstrated to substantially improve on the performance of SR under practical conditions (9, 50).Notably, there is evidence to suggest that CCB staining is not fundamentally insensitive, but rather that its sensitivity has been limited by traditional densitometric detection (50, 51). When excited in the near IR at ∼650 nm, protein-bound CB in-gel emits light in the range of 700–800 nm. Until recently, the lack of low-cost, widely available and sufficiently sensitive infrared (IR)-capable imaging instruments prevented mainstream adoption of in-gel CB infrared fluorescence detection (IRFD); advances in imaging technology are now making such instruments far more accessible. Initial reports suggested that IRFD of CB-stained gels provided greater sensitivity than traditional densitometric detection (50, 51). Using CB R250, in-gel IRFD was reported to detect as little as 2 ng of protein in-gel, with a LDR of about an order of magnitude (2 to 20 ng, or 10 to 100 ng in separate gels), beyond which the fluorescent response saturated into the μg range (51). Using the G250 dye variant, it was determined that CB-IRFD of 2D gels detected ∼3 times as many proteins as densitometric imaging, and a comparable number of proteins as seen by SR (50). This study also concluded that CB-IRFD yielded a significantly higher signal to background ratio (S/BG) than SR, providing initial evidence that CB-IRFD may be superior to SR in some aspects of stain performance (50).Despite this initial evidence of the viability of CB-IRF as an in-gel protein detection method, a detailed characterization of this technology has not yet been reported. Here a more thorough, quantitative characterization of CB-IRFD is described, establishing its lowest limit of detection (LLD), IPV, and LDR in comparison to SR. Finally a wealth of modifications and enhancements of CCB formulations have been reported (8, 12, 21, 24, 26, 29, 40, 41, 5254), and likewise there are many commercially available CCB stain formulations. To date, none of these formulations have been compared quantitatively in terms of their relative performance when detected using IRF. As a general detection method for gel-based proteomics, CB-IRFD was found to provide comparable or even slightly superior performance to SR according to most criteria, including sensitivity and selectivity (50). Furthermore, in terms of LDR, CB-IRFD showed distinct advantages over SR. However, assessing proteomes resolved by 2DE revealed critical distinctions between CB-IRFD and SR in terms of protein quantification versus threshold detection: neither stain could be considered unequivocally superior to the other by all criteria. Nonetheless, IRFD proved the most sensitive method of detecting CB-stained protein in-gel, enabling high sensitivity detection without the need for expensive reagents or even commercial formulations. Overall, CB-IRFD is a viable alternative to SR and other mainstream fluorescent stains, mitigating the high cost of large-scale gel-based proteomic analyses, making high sensitivity gel-based proteomics accessible to all labs. With improvements to CB formulations and/or image acquisition instruments, the performance of this detection technology may be further enhanced.  相似文献   

3.
Approximately 0.2% of Americans aged 20 to 39 years are childhood cancer survivors. Advances in cancer detection and therapy have greatly improved survival rates for young cancer patients; however, treatment of childhood cancers can adversely impact reproductive function. Many cancer patients report a strong desire to be informed of existing options for fertility preservation and future reproduction prior to initiation of gonadotoxic cancer therapies, including surgery, chemotherapy, and radiotherapy. This article discusses, in detail, the effects of cancer treatment on fertility in men and women, and outlines both current and experimental methods of fertility preservation among cancer patients.Key words: Fertility preservation, Childhood cancer, Sperm cryopreservation, Testicular tissue cryopreservation, Spermatogonial stem cell cryopreservation, Embryo cryopreservation, Oocyte cryopreservation, Ovarian tissue cryopreservationIn 2014, an estimated 15,780 new cancer cases were diagnosed among children and adolescents younger than age 20 years, resulting in 1960 deaths. In addition, 1 in 285 children will be diagnosed with cancer before age 20, and approximately 0.2% of Americans aged 20 to 39 years are childhood cancer survivors.1 Advances in cancer detection and therapy have greatly improved survival rates for young cancer patients; however, treatment of childhood cancers can adversely impact reproductive function (eg, men who survive childhood cancer are half as likely as their siblings to father a child).2 Many cancer patients report a strong desire to be informed of existing options for fertility preservation and future reproduction.3 Therefore, the American Society of Clinical Oncology and the American Society for Reproductive Medicine recommend that consideration of fertility preservation be included prior to initiation of gonadotoxic cancer therapies, including surgery, chemotherapy, and radiotherapy.46Infertility as a result of cancer treatment can be psycho logically upsetting for many patients,3,7,8 and data suggest that those who pursued fertility preservation usually cope better with their cancer treatment.9 Infertile cancer survivors have an option to become parents through adoption or gamete donation, but most declare a preference for having a biological child.3,10 Schover and colleagues3 found that 51% of newly diagnosed young male cancer patients reported a desire to have children in the future, and this rate increased to 77% for those who did not have children at the time of diagnosis. The desire to become a biological parent persists in male cancer survivors, as 70% reported wanting to father a child after chemotherapy treatment.9 A history of cancer treatment may be perceived by some to pose an increased risk to the health of future offspring; however, several studies have shown that male cancer survivors have not demonstrated an increased risk for having a child with birth defects or cancer.11,12 Recently, a retrospective cohort study conducted in the United States showed no increased risk of malformations or premature birth in the offspring of male cancer survivors.13The optimal time for consideration of fertility preservation is before the initiation of any oncologic therapy that can affect gametogenesis; thus, it is critical that fertility preservation is discussed with all patients at the time of diagnosis and before treatment starts. Practitioners who provide care for cancer patients should be aware of the relationship between cancer treatment and infertility. Moreover, they need to be able to appropriately refer patients to a reproductive medicine specialist in a timely fashion for further counseling and fertility preservation. Although fertility concerns are paramount to young adults with cancer, many oncologists still do not routinely address these concerns.3,14 In a survey of 200 young male cancer survivors who were primarily treated at a comprehensive cancer center, only 51% recalled being offered sperm cryopreservation prior to their cancer treatment.3 Further, it is important to recognize the psychologic stressors associated with a new cancer diagnosis and associated late effects of cancer treatment, such as infertility or early menopause. Findings from several studies support the importance of counseling patients regarding their risk for fertility issues and educating providers regarding the potential fertility preservation options that are available. For example, Babb and colleagues15 found that, at many institutions, this counseling is already taking place and there is a high rate of discussion with newly diagnosed patients regarding infertility.  相似文献   

4.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

5.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

6.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

7.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

8.
9.
There is a mounting evidence of the existence of autoantibodies associated to cancer progression. Antibodies are the target of choice for serum screening because of their stability and suitability for sensitive immunoassays. By using commercial protein microarrays containing 8000 human proteins, we examined 20 sera from colorectal cancer (CRC) patients and healthy subjects to identify autoantibody patterns and associated antigens. Forty-three proteins were differentially recognized by tumoral and reference sera (p value <0.04) in the protein microarrays. Five immunoreactive antigens, PIM1, MAPKAPK3, STK4, SRC, and FGFR4, showed the highest prevalence in cancer samples, whereas ACVR2B was more abundant in normal sera. Three of them, PIM1, MAPKAPK3, and ACVR2B, were used for further validation. A significant increase in the expression level of these antigens on CRC cell lines and colonic mucosa was confirmed by immunoblotting and immunohistochemistry on tissue microarrays. A diagnostic ELISA based on the combination of MAPKAPK3 and ACVR2B proteins yielded specificity and sensitivity values of 73.9 and 83.3% (area under the curve, 0.85), respectively, for CRC discrimination after using an independent sample set containing 94 sera representative of different stages of progression and control subjects. In summary, these studies confirmed the presence of specific autoantibodies for CRC and revealed new individual markers of disease (PIM1, MAPKAPK3, and ACVR2B) with the potential to diagnose CRC with higher specificity and sensitivity than previously reported serum biomarkers.Colorectal cancer (CRC)1 is the second most prevalent cancer in the western world. The development of this disease takes decades and involves multiple genetic events. CRC remains a major cause of mortality in developed countries because most of the patients are diagnosed at advanced stages because of the reluctance to use highly invasive diagnostic tools like colonoscopy. Actually only a few proteins have been described as biomarkers in CRC (carcinoembryonic antigen (CEA), CA19.9, and CA125 (13)), although none of them is recommended for clinical screening (4). Proteomics analysis is actively used for the identification of new biomarkers. In previous studies, the use of two-dimensional DIGE and antibody microarrays allowed the identification of differentially expressed proteins in CRC tissue, including isoforms and post-translational modifications responsible for modifications in signaling pathways (58). Both approaches resulted in the identification of a collection of potential tumoral tissue biomarkers that is currently being investigated.However, the implementation of simpler, non-invasive methods for the early detection of CRC should be based on the identification of proteins or antibodies in serum or plasma (913). There is ample evidence of the existence of an immune response to cancer in humans as demonstrated by the presence of autoantibodies in cancer sera. Self-proteins (autoantigens) altered before or during tumor formation can elicit an immune response (1319). These tumor-specific autoantibodies can be detected at early cancer stages and prior to cancer diagnosis revealing a great potential as biomarkers (14, 15, 20). Tumor proteins can be affected by specific point mutations, misfolding, overexpression, aberrant glycosylation, truncation, or aberrant degradation (e.g. p53, HER2, NY-ESO1, or MUC1 (16, 2125)). In fact, a number of tumor-associated autoantigens (TAAs) were identified previously in different studies involving autoantibody screening in CRC (2628).Several approaches have been used to identify TAAs in cancer, including natural protein arrays prepared with fractions obtained from two-dimensional LC separations of tumoral samples (29, 30) or protein extracts from cancer cells or tissue (9, 31) probed by Western blot with patient sera, cancer tissue peptide libraries expressed as cDNA expression libraries for serological screening (serological analysis of recombinant cDNA expression libraries (SEREX)) (22, 32), or peptides expressed on the surface of phages in combination with microarrays (17, 18, 33, 34). However, these approaches suffer from several drawbacks. In some cases TAAs have to be isolated and identified from the reactive protein lysate by LC-MS techniques, or in the phage display approach, the reactive TAA could be a mimotope without a corresponding linear amino acid sequence. Moreover, cDNA libraries might not be representative of the protein expression levels in tumors as there is a poor correspondence between mRNA and protein levels.Protein arrays provide a novel platform for the identification of both autoantibodies and their respective TAAs for diagnostic purposes in cancer serum patients. They present some advantages. Proteins printed on the microarray are known “a priori,” avoiding the need for later identifications and the discovery of mimotopes. There is no bias in protein selection as the proteins are printed at a similar concentration. This should result in a higher sensitivity for biomarker identification (13, 35, 36).In this study, we used commercially available high density protein microarrays for the identification of autoantibody signatures and tumor-associated antigens in colorectal cancer. We screened 20 CRC patient and control sera with protein microarrays containing 8000 human proteins to identify the CRC-associated autoantibody repertoire and the corresponding TAAs. Autoantibody profiles that discriminated the different types of CRC metastasis were identified. Moreover a set of TAAs showing increased or decreased expression in cancer cell lines and paired tumoral tissues was found. Finally an ELISA was set up to test the ability of the most immunoreactive proteins to detect colorectal adenocarcinoma. On the basis of the antibody response, combinations of three antigens, PIM1, MAPKAPK3, and ACVR2B, showed a great potential for diagnosis.  相似文献   

10.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

11.
Decomposing a biological sequence into its functional regions is an important prerequisite to understand the molecule. Using the multiple alignments of the sequences, we evaluate a segmentation based on the type of statistical variation pattern from each of the aligned sites. To describe such a more general pattern, we introduce multipattern consensus regions as segmented regions based on conserved as well as interdependent patterns. Thus the proposed consensus region considers patterns that are statistically significant and extends a local neighborhood. To show its relevance in protein sequence analysis, a cancer suppressor gene called p53 is examined. The results show significant associations between the detected regions and tendency of mutations, location on the 3D structure, and cancer hereditable factors that can be inferred from human twin studies.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]  相似文献   

12.
13.
14.
Olfactory receptors (ORs) are expressed not only in the sensory neurons of the olfactory epithelium, where they detect volatile substances, but also in various other tissues where their potential functions are largely unknown. Here, we report the physiological characterization of human OR51E2, also named prostate-specific G-protein-coupled receptor (PSGR) due to its reported up-regulation in prostate cancer. We identified androstenone derivatives as ligands for the recombinant receptor. PSGR can also be activated with the odorant β-ionone. Activation of the endogenous receptor in prostate cancer cells by the identified ligands evoked an intracellular Ca2+ increase. Exposure to β-ionone resulted in the activation of members of the MAPK family and inhibition of cell proliferation. Our data give support to the hypothesis that because PSGR signaling could reduce growth of prostate cancer cells, specific receptor ligands might therefore be potential candidates for prostate cancer treatment.Excessive signaling by G-protein-coupled receptors (GPCRs)3 such as endothelin A receptor (1), bradykinin 1 receptor (2), follicle-stimulating hormone receptor (3), and thrombin receptor (4, 5) is known to occur in prostate cancers due to strong overexpression of the respective receptors. Activation of some of these GPCRs results in androgen-independent androgen receptor activation, thus promoting the transition of prostate cancer cells from an androgen-dependent to an androgen-independent state (6, 7).The prostate-specific G-protein-coupled receptor (PSGR) is a class A GPCR that was initially identified as a prostate-specific tumor biomarker (810). It is specifically expressed in prostate epithelial cells, and its expression increases significantly in human prostate intraepithelial neoplasia and prostate tumors, suggesting that PSGR may play an important role in early prostate cancer development and progression (9, 11). Although expression of the human PSGR was found to be prostate-specific (10, 12), mRNA can also be detected in the olfactory zone and the medulla oblongata of the human brain (12). Human PSGR shares 93% amino acid homology to the respective mouse and rat homologues, which are also expressed in the brain (12). Interestingly, PSGR has numerous sequence motifs in common with the large superfamily of olfactory receptors (ORs), which build the largest class of human GPCRs and allow the recognition of a wide range of structurally diverse molecules in the nasal epithelium (1315). Recently, also the steroid hormones androstenone and androstadienone were identified as OR ligands (16). In addition to their role in the sensory neurons of the nose, ORs have been found in different tissues throughout the body (17, 18). Their function(s) in these extranasal locations are questionable except for in a few cases where functional studies have been performed in spermatozoa (19, 20) and in enterochromaffin cells of the gastrointestinal tract (21).Here, we report the identification of steroid ligands of heterologously expressed PSGR and investigate the functional relevance of PSGR expression in prostate tissue. Steroid hormones elicited rapid Ca2+ responses in the LNCaP prostate cancer cell line and in primary human prostate epithelial cells. Moreover, activated PSGR causes phosphorylation of p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) mitogen-activated protein kinases (MAPKs), resulting in reduced proliferation rates in prostate cancer cells.  相似文献   

15.
16.
17.
Human FGF1 (fibroblast growth factor 1) is a powerful signaling molecule with a short half-life in vivo and a denaturation temperature close to physiological. Binding to heparin increases the stability of FGF1 and is believed to be important in the formation of FGF1·fibroblast growth factor receptor (FGFR) active complex. In order to reveal the function of heparin in FGF1·FGFR complex formation and signaling, we constructed several FGF1 variants with reduced affinity for heparin and with diverse stability. We determined their biophysical properties and biological activities as well as their ability to translocate across cellular membranes. Our study showed that increased thermodynamic stability of FGF1 nicely compensates for decreased binding of heparin in FGFR activation, induction of DNA synthesis, and cell proliferation. By stepwise introduction of stabilizing mutations into the K118E (K132E) FGF1 variant that shows reduced affinity for heparin and is inactive in stimulation of DNA synthesis, we were able to restore the full mitogenic activity of this mutant. Our results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat and/or proteolytic degradation and that heparin is not essential for a direct FGF1-FGFR interaction and receptor activation.FGF1 (fibroblast growth factor 1) belongs to a family of polypeptide growth factors comprising in humans 22 structurally related proteins (1, 2). The signaling induced by the growth factor leads to a wide range of cellular responses during development as well as in adult life, such as growth regulation, differentiation, survival, stress response, migration, and proliferation of different cell types (3). The biological activity of FGF1 is exerted through binding to four high affinity cell surface receptors (FGFR1–4), resulting in receptor dimerization and transphosphorylation in its tyrosine kinase domain (4, 5). The activated FGFR3 induces cellular response by initiating several signaling cascades, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/Akt, and phospholipase C-γ (PLC-γ) pathways (6).In addition to FGFRs, FGF1 binds to heparan sulfates (HS) associated with proteoglycans at the cell surface and in the extracellular matrix (7). Among the physiological sugars, the highest affinity for FGF1 is shown by heparin, a widely used linear, highly sulfated polysaccharide composed of 2-O-sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine units (8).Despite many years of research, there is still controversy regarding the molecular role of heparin/HS in FGF1- and FGF2-induced signaling. Thus, the question of whether or not the linkage of two molecules of the growth factor by heparin/HS is an absolute prerequisite for induction of FGFR dimerization is still open. Numerous studies have concluded that the presence of heparin/HS is obligatory for FGF signaling. It is widely believed that heparin/HS is directly involved in receptor dimerization and is critical for mitogenic response stimulated by the growth factor (4, 6, 810).On the other hand, several authors working on FGF1 and FGF2 have suggested that there is no mandatory requirement for heparin for the assembly and activation of the FGF·FGFR complex. They imply that heparin only plays a role in association of two molecules of the growth factor and therefore facilitates their binding to FGFR (11). It has been reported that FGF1 and FGF2 can interact with the FGFR and trigger phosphorylation of p42/44 MAPK and activation of other signaling pathways even in the absence of HS (1216).The accepted role of heparin/HS in FGF1 signaling is to prevent the degradation of the growth factor (17). The interaction with heparin or HS protects FGF1 against heat, acidic pH, and proteases (18, 19). HS also seems to regulate the activity of different FGFs by creating their local reservoir and generating a concentration gradient of the growth factor (6, 17).The binding of FGF1 to heparin/HS is mediated by specific residues forming a positively charged patch on the protein surface (20, 21). The major contribution is made by Lys118 (Lys132 in the full-length numbering system), which was identified by Harper and Lobb (22), and Lys112 and Arg122 (23, 24). Additional residues of FGF1 involved in the interaction with heparin are the positively charged Lys113, Arg119, and Lys128 and the polar Asn18, Asn114, and Gln127 (20, 21). Site-directed mutagenesis and other studies have revealed the importance of Lys118 not only in heparin binding but also for the biological function of FGF1 (22, 25, 26). It was shown that the K118E (K132E) mutant is inactive in stimulation of DNA synthesis, although its affinity for FGFR and the ability to activate signaling cascades is not reduced (27, 28). Despite extensive research, the reason for the lack of mitogenic potential of K118E FGF1 is still not clear.In this paper, we verified the function of heparin in FGF1·FGFR complex formation and signaling by constructing several FGF1 mutants with reduced affinity for heparin. To recover the stability of these variants, which could no longer be stabilized by heparin, we supplemented them stepwise with stabilizing mutations (29). We analyzed thoroughly their biological activity and their ability to translocate across cellular membranes (3034). Interestingly, the full mitogenic activity of the K118E FGF1 variant was restored by the introduced stabilizing mutations.Our results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat denaturation and proteolytic degradation and that the increased stability of the growth factor can compensate for reduced heparin binding.  相似文献   

18.
19.
Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly α-helical conformation to one dominated by β-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91–231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant β-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a β-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126–227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state.Prion diseases, such as Creutzfeldt-Jacob and Gerstmann-Sträussler-Scheinker in humans, scrapie in sheep, and bovine spongiform encephalopathy in cattle, are fatal neurological disorders associated with the deposition of an abnormally folded form of a host-encoded glycoprotein, prion (PrP)2 (1). These diseases may be inherited, arise sporadically, or be acquired through the transmission of an infectious agent (2, 3). The disease-associated form of the protein, termed the scrapie form or PrPSc, differs from the normal cellular form (PrPC) through a conformational change, resulting in a significant increase in the β-sheet content and protease resistance of the protein (3, 4). PrPC, in contrast, consists of a predominantly α-helical structured domain and an unstructured N-terminal domain, which is capable of binding a number of divalent metals (512). A single disulfide bond links two of the main α-helices and forms an integral part of the core of the structured domain (13, 14).According to the protein-only hypothesis (15), the infectious agent is composed of a conformational isomer of PrP (16) that is able to convert other isoforms to the infectious isomer in an autocatalytic manner. Despite numerous studies, little is known about the mechanism of conversion of PrPC to PrPSc. The most coherent and general model proposed thus far is that PrPC fluctuates between the dominant native state and minor conformations, one or a set of which can self-associate in an ordered manner to produce a stable supramolecular structure composed of misfolded PrP monomers (3, 17). This stable, oligomeric species can then bind to, and stabilize, rare non-native monomer conformations that are structurally complementary. In this manner, new monomeric chains are recruited and the system can propagate.In view of the above model, considerable effort has been devoted to generating and characterizing alternative, possibly PrPSc-like, conformations in the hope of identifying common properties or features that facilitate the formation of amyloid oligomers. This has been accomplished either through PrPSc-dependent conversion reactions (1820) or through conversion of PrPC in the absence of a PrPSc template (2125). The latter approach, using mainly disulfide-oxidized recombinant PrP, has generated a wide range of novel conformations formed under non-physiological conditions where the native state is relatively destabilized. These conformations have ranged from near-native (14, 26, 27), to those that display significant β-sheet content (21, 23, 2833). The majority of these latter species have shown a high propensity for aggregation, although not all are on-pathway to the formation of amyloid. Many of these non-native states also display some of the characteristics of PrPSc, such as increased β-sheet content, protease resistance, and a propensity for oligomerization (28, 29, 31) and some have been claimed to be associated with the disease process (34).One such PrP folding intermediate, termed β-PrP, differs from the majority of studied PrP intermediate states in that it is formed by refolding the PrP molecule from the native α-helical conformation (here termed α-PrP), at acidic pH in a reduced state, with the disulfide bond broken (22, 35). Although no covalent differences between the PrPC and PrPSc have been consistently identified to date, the role of the disulfide bond in prion propagation remains disputed (25, 3639). β-PrP is rich in β-sheet structure (22, 35), and displays many of the characteristics of a PrPSc-like precursor molecule, such as partial resistance to proteinase K digestion, and the ability to form amyloid fibrils in the presence of physiological concentrations of salts (40).The β-PrP species previously characterized, spanning residues 91–231 of PrP, was soluble at low ionic strength buffers and monomeric, according to elution volume on gel filtration (22). NMR analysis showed that it displayed radically different spectra to those of α-PrP, with considerably fewer observable peaks and markedly reduced chemical shift dispersion. Data from circular dichroism experiments showed that fixed side chain (tertiary) interactions were lost, in contrast to the well defined β-sheet secondary structure, and thus in conjunction with the NMR data, indicated that β-PrP possessed a number of characteristics associated with a “molten globule” folding intermediate (22). Such states have been proposed to be important in amyloid and fibril formation (41). Indeed, antibodies raised against β-PrP (e.g. ICSM33) are capable of recognizing native PrPSc (but not PrPC) (4244). Subsequently, a related study examining the role of the disulfide bond in PrP folding confirmed that a monomeric molten globule-like form of PrP was formed on refolding the disulfide-reduced protein at acidic pH, but reported that, under their conditions, the circular dichroism response interpreted as β-sheet structure was associated with protein oligomerization (45). Indeed, atomic force microscopy on oligomeric full-length β-PrP (residues 23–231) shows small, round particles, showing that it is capable of formation of oligomers without forming fibrils (35). Notably, however, salt-induced oligomeric β-PrP has been shown to be a potent inhibitor of the 26 S proteasome, in a similar manner to PrPSc (46). Impairment of the ubiquitin-proteasome system in vivo has been linked to prion neuropathology in prion-infected mice (46).Although the global properties of several PrP intermediate states have been determined (3032, 35), no information on their conformational properties on a sequence-specific basis has been obtained. Their conformational properties are considered important, as the elucidation of the chain conformation may provide information on the way in which these chains pack in the assembly process, and also potentially provide clues on the mechanism of amyloid assembly and the phenomenon of prion strains. As the conformational fluctuations and heterogeneity of molten globule states give rise to broad NMR spectra that preclude direct observation of their conformational properties by NMR (4750), here we use denaturant titration experiments to determine the conformational properties of β-PrP, through the population of the unfolded state that is visible by NMR. In addition, we use circular dichroism and analytical ultracentrifugation to examine the global structural properties, and the distribution of multimeric species that are formed from β-PrP.  相似文献   

20.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号