首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell''s periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.Toxoplasma gondii is an obligate intracellular protozoan parasite that is capable of causing disease in fetuses and immunocompromised individuals (23). The parasite infects a wide range of nucleated cells of most warm-blooded animals. The mechanisms underlying this wide tropism are not known but could be due to either the parasite infecting cells using a ubiquitously expressed host receptor and associated machinery, inserting its own receptor into the host cell''s plasma membrane, or using multiple host cell receptors/machinery (5).Toxoplasma invasion is a multistep, complex process consisting of parasite contact to host cells, intimate attachment, parasite motility, and then penetration (5). Host cell contact is a loose, low-affinity interaction that is mediated by parasite surface antigens. An unknown signal then triggers the release of proteins from a specialized secretory organelle called micronemes whose contents include proteins that function as adhesins. This is then followed by parasite gliding motility on the host cell surface. At some point, proteins from a second secretory organelle, named rhoptries, are exocytosed. Among these rhoptry proteins, several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the previously secreted AMA1 microneme protein (1, 2, 20, 33). Together, these proteins form the moving junction complex, which defines the parasite entry site on the host cell plasma membrane. Parasite penetration occurs by the parasite propelling itself forward, via acto-myosin-dependent motility, into the host plasma membrane (35). This causes an invagination of the plasma membrane resulting in the formation of the parasitophorous vacuole (PV), which is the compartment that the parasite resides in throughout its time in the host cell. However, host plasma membrane-associated proteins are selectively incorporated into the developing PV such that glycosylphosphatidylinositol (GPI)-linked proteins are included, while single-pass transmembrane proteins are excluded (7, 24).In contrast to parasite molecules that function during invasion, few host cell components involved in this process are known. A notable exception is the finding that host Arp2/3-dependent actin polymerization promotes Toxoplasma invasion (11). Nevertheless, how actin or other host molecules function during invasion remains to be determined. The host microtubule cytoskeleton has been widely studied for its role during receptor-mediated endocytosis, as well as in bacterial and viral infections, where microtubules act to facilitate cargo transport from the host cell periphery to the interior (8, 15, 27, 29, 40). Consistent with this role in cargo transport, host microtubules also promote trafficking of rhoptry proteins secreted into the host cell (12). However, whether this host cell structure functions during parasite invasion per se is unknown.Here, we tested the hypothesis that host microtubules are used by Toxoplasma tachyzoites to penetrate into its host cell. Using synchronized parasite invasion assays, we find that disruption of host microtubules significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are localized to the moving junction but, unlike their previously described role in pathogen invasion, host microtubules promote tachyzoite invasion by hastening the time that parasites initiate invasion.  相似文献   

2.
Streptococcus pneumoniae is one of the major causative agents of pneumonia, sepsis, meningitis and other morbidities. In spite of its heavy disease burden, surprisingly little is known about the mechanisms involved in the switch of life style, from commensal colonizer of the nasopharynx to invasive pathogen. In vitro experiments, and mouse models have shown that S. pneumoniae can be internalized by host cells, which coupled with intracellular vesicle transport through the cells, i.e. transcytosis, is suggested to be the first step of invasive disease. To further dissect the process of S. pneumoniae internalization, we chemically inhibited discrete parts of the cellular uptake system. We show that this invasion of the host cells was facilitated via both clathrin- and caveolae-mediated endocytosis. After internalization we demonstrated that the bulk of the internalized S. pneumoniae was killed in the lysosome. Interestingly, inhibition of the lysosome altered transcytosis dynamics as it resulted in an increase in the transport of the internalized bacteria out of the cells via the basal side. These results show that uptake of S. pneumoniae into host cells occurs via multiple pathways, as opposed to the often proposed view of invasion being dependent on specific, and singular receptor-mediated endocytosis. This indicates that the endothelium not only has a critical role as a physical barrier against S. pneumoniae in the blood stream, but also in degrading S. pneumonia cells that have adhered to, and invaded the endothelial cells.  相似文献   

3.
4.
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of warm-blooded animals. During infection, T. gondii disseminates as a fast replicating form called the tachyzoite. Tachyzoites convert into a slow-growing encysted form called the bradyzoite by a signaling process that is not well characterized. Within animals, bradyzoite cysts are found in the central nervous system and muscle tissue and represent the chronic stage of infection. Conversion to bradyzoites can be simulated in tissue culture by CO2 starvation, using medium with high a pH, or the addition of interferon gamma (IFNγ). Bradyzoites are characterized by the presence of a cyst wall, to which the lectin Dolichos biflorus agglutinin (DBA) binds. Fluorescently labeled DBA is used to visualize the cyst wall in parasites grown in human foreskin fibroblasts (HFFs) that have been exposed to low CO2 and high pH medium. Similarly, parasites residing in murine bone marrow-derived macrophages (BMMs) display a cyst wall detectable by DBA after the BMMs are activated with IFNγ and lipopolysaccharide (LPS). This protocol will demonstrate how to induce conversion of T. gondii to bradyzoites using a high pH growth medium with low CO2 and activation of BMMs. Host cells will be cultured on coverslips, infected with tachyzoites and either activated with addition of IFNγ and LPS (BMMs) or exposed to a high pH growth medium (HFFs) for three days. Upon completion of infections, host cells will be fixed, permeabilized, and blocked. Cyst walls will be visualized using rhodamine DBA with fluorescence microscopy.Download video file.(115M, mp4)  相似文献   

5.
Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites.  相似文献   

6.
Toxoplasma gondii results in ocular toxoplasmosis characterized by chorioretinitis with inflammation and necrosis of the neuroretina, pigment epithelium, and choroid. After invasion, T. gondii replicates in host cells before cell lysis, which releases the parasites to invade neighboring cells to repeat the life cycle and establish a chronic retinal infection. The mechanism by which T. gondii avoids innate immune defense, however, is unknown. Therefore, we determined whether PI3K/Akt signaling pathway activation by T. gondii is essential for subversion of host immunity and parasite proliferation. T. gondii infection or excretory/secretory protein (ESP) treatment of the human retinal pigment epithelium cell line ARPE-19 induced Akt phosphorylation, and PI3K inhibitors effectively reduced T. gondii proliferation in host cells. Furthermore, T. gondii reduced intracellular reactive oxygen species (ROS) while activating the PI3K/Akt signaling pathway. While searching for the main source of these ROS, we found that NADPH oxidase 4 (Nox4) was prominently expressed in ARPE-19 cells, and this expression was significantly reduced by T. gondii infection or ESP treatment along with decreased ROS levels. In addition, artificial reduction of host Nox4 levels with specific siRNA increased replication of intracellular T. gondii compared to controls. Interestingly, these T. gondii-induced effects were reversed by PI3K inhibitors, suggesting that activation of the PI3K/Akt signaling pathway is important for suppression of both Nox4 expression and ROS levels by T. gondii infection. These findings demonstrate that manipulation of the host PI3K/Akt signaling pathway and Nox4 gene expression is a novel mechanism involved in T. gondii survival and proliferation.  相似文献   

7.
Inhibitory receptors and activating receptor expressed on decidual natural killer (dNK) cells are generally believed to be important in abnormal pregnancy outcomes and induced adverse pregnancy. However, if Toxoplasma gondii (T. gondii) infection induced abnormal pregnancy was related to dNK cells changes is not clear. In this study, we used human dNK cells co-cultured with human extravillous cytotrophoblast (EVT) cells following YFP-Toxoplasma gondii (YFP-T. gondii) infection in vitro and established animal pregnant infection model. Levels of inhibitory receptors KIR2DL4 and ILT-2, their ligand HLA-G, and activating receptor NKG2D in human decidua, and NKG2A and its ligand Qa-1 and NKG2D in mice uterine were analyzed by real-time PCR and flow cytometry with levels of NKG2D significantly higher than those of KIR2DL4 and ILT-2 in vitro and in invo. The level of NKG2D was positively correlated with cytotoxic activity of dNK cells in vitro. Numbers of abnormal pregnancies were significantly greater in the infected group than in the control group. This result demonstrated that the increased NKG2D expression and imbalance between inhibitory receptors of dNK cells and HLA-G may contribute to abnormal pregnancy outcomes observed upon maternal infection with T. gondii.  相似文献   

8.
We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow. The identity of cell types marked by constitutive and temporal fate mapping included osteoblasts, adipocytes, vascular smooth muscle, perineural, and stromal cells. Prolonged tracing of embryonic precursors labeled at E14.5dpc revealed the continued existence of their progeny up to 10 months of age, suggesting that fate mapped, labeled embryonic precursors gave rise to long lived bone marrow progenitor cells. To provide further evidence for the marking of bone marrow progenitors, bone marrow cultures derived from Osterix-EGFPCre/Ai9 mice showed that stromal cells retained Cre reporter expression and yielded a FACS sorted population that was able to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro and into osteoblasts, adipocytes, and perivascular stromal cells after transplantation. Collectively, our studies reveal the developmental process by which Osterix-Cre labeled embryonic progenitors give rise to adult bone marrow progenitors which establish and maintain the bone marrow stroma.  相似文献   

9.
10.
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.  相似文献   

11.
Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells.  相似文献   

12.
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses.  相似文献   

13.

Background

Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB.

Objective

This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction.

Methods

We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed.

Results

Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone.

Conclusions

Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.  相似文献   

14.
15.

Purpose

To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs).

Methods

Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed.

Results

Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment.

Conclusion

Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice.  相似文献   

16.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

17.
We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in the bundle sheath. Wild-type (W22) and bundle sheath defective2-mutable1 (bsd2-m1) seeds were grown in a controlled environment chamber at 100 to 130 μmol m−2 s−1 photosynthetic photon flux density, and leaf tissue was harvested 11 d after sowing, following exposure to various light intensities. Immunoblot analysis showed no major difference in the amount of polypeptide present for several mesophyll- and bundle-sheath-specific photosynthetic enzymes apart from Rubisco, which was either completely absent or very much reduced in the mutant. Similarly, leaf net CO2-exchange analysis and in vitro radiometric Rubisco assays showed that no appreciable carbon fixation was occurring in the mutant. In contrast, the sensitivity of PEPC to malate inhibition in bsd2-m1 leaves decreased significantly with an increase in light intensity, and there was a concomitant increase in PEPC kinase activity, similar to that seen in wild-type leaf tissue. Thus, although bsd2-m1 mutant plants lack an operative Calvin cycle, light activation of PEPC kinase and its target enzyme are not grossly perturbed.  相似文献   

18.
Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP–PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1–Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFPCoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.  相似文献   

19.
Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2’-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号