首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.  相似文献   

2.
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.  相似文献   

3.
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.  相似文献   

4.
We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.  相似文献   

5.
6.
7.
8.
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.  相似文献   

9.
10.
Determining the function of a non-coding RNA requires costly and time-consuming wet-lab experiments. For this reason, computational methods which ascertain the homology of a sequence and thereby deduce functionality and family membership are often exploited. In this fashion, newly sequenced genomes can be annotated in a completely computational way. Covariance models are commonly used to assign novel RNA sequences to a known RNA family. However, to construct such models several examples of the family have to be already known. Moreover, model building is the work of experts who manually edit the necessary RNA alignment and consensus structure. Our method, RNAlien, starting from a single input sequence collects potential family member sequences by multiple iterations of homology search. RNA family models are fully automatically constructed for the found sequences. We have tested our method on a subset of the RfamRNA family database. RNAlien models are a starting point to construct models of comparable sensitivity and specificity to manually curated ones from the Rfam database. RNAlien Tool and web server are available at http://rna.tbi.univie.ac.at/rnalien/.  相似文献   

11.
S-glutathionylation, the reversible formation of mixed disulfides between glutathione(GSH) and cysteine residues in proteins, is a specific form of post-translational modification that plays important roles in various biological processes, including signal transduction, redox homeostasis, and metabolism inside cells. Experimentally identifying S-glutathionylation sites is labor-intensive and time consuming, whereas bioinformatics methods provide an alternative way to this problem by predicting S-glutathionylation sites in silico. The bioinformatics approaches give not only candidate sites for further experimental verification but also bio-chemical insights into the mechanism of S-glutathionylation. In this paper, we firstly collect experimentally determined S-glutathionylated proteins and their corresponding modification sites from the literature, and then propose a new method for predicting S-glutathionylation sites by employing machine learning methods based on protein sequence data. Promising results are obtained by our method with an AUC (area under ROC curve) score of 0.879 in 5-fold cross-validation, which demonstrates the predictive power of our proposed method. The datasets used in this work are available at http://csb.shu.edu.cn/SGDB.  相似文献   

12.
13.
14.
Selection may prove to be a powerful tool for the generation of functional RNAs for in vivo genetic regulation. However, traditional in vitro selection schemes do not mimic physiological conditions, and in vivo selection schemes frequently use small pool sizes. Here we describe a hybrid in vitro/in vivo selection scheme that overcomes both of these disadvantages. In this new method, PCR-amplified expression templates are transfected into mammalian cells, transcribed hammerhead RNAs self-cleave, and the extracted, functional hammerhead ribozyme species are specifically amplified for the next round of selection. Using this method we have selected a number of cis-cleaving hammerhead ribozyme variants that are functional in vivo and lead to the inhibition of gene expression. More importantly, these results have led us to develop a quantitative, kinetic model that can be used to assess the stringency of the hybrid selection scheme and to direct future experiments.  相似文献   

15.
We present a new computational method for solving a classical problem, the identification problem of cis-regulatory motifs in a given set of promoter sequences, based on one key new idea. Instead of scoring candidate motifs individually like in all the existing motif-finding programs, our method scores groups of candidate motifs with similar sequences, called motif closures, using a P-value, which has substantially improved the prediction reliability over the existing methods. Our new P-value scoring scheme is sequence length independent, hence allowing direct comparisons among predicted motifs with different lengths on the same footing. We have implemented this method as a Motif Recognition Computer (MREC) program, and have extensively tested MREC on both simulated and biological data from prokaryotic genomes. Our test results indicate that MREC can accurately pick out the actual motif with the correct length as the best scoring candidate for the vast majority of the cases in our test set. We compared our prediction results with two motif-finding programs Cosmo and MEME, and found that MREC outperforms both programs across all the test cases by a large margin. The MREC program is available at http://csbl.bmb.uga.edu/~bingqiang/MREC1/.  相似文献   

16.
Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean around the world. Crop rotation and resistant cultivars are used to mitigate the damage of SCN, but these approaches are not completely successful because of the varied SCN populations. Thus, the limitations of these practices with soybean dictate investigation of other avenues of protection of soybean against SCN, perhaps through genetically engineering of broad resistance to SCN. For better understanding of the consequences of genetic manipulation, elucidation of SCN protein composition at the subunit level is necessary. We have conducted studies to determine the composition of SCN proteins using a proteomics approach in our laboratory using twodimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate SCN proteins and to characterize the proteins further using mass spectrometry. Our analysis resulted in the identification of several hundred proteins. In this investigation, we developed a web based database (SCNProDB) containing protein information obtained from our previous published studies. This database will be useful to scientists who wish to develop SCN resistant soybean varieties through genetic manipulation and breeding efforts. The database is freely accessible from: http://bioinformatics.towson.edu/Soybean_SCN_proteins_2D_Gel_DB/Gel1.aspx  相似文献   

17.
A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT) sequencing data is important for saving sequencing resources and reducing time-to-result. A previous approach implemented in npScarf provided an efficient streaming algorithm for hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly graph instead of the separated pre-assembly contigs. It is able to produce more complete genome assembly by resolving the path finding problem on the assembly graph using long reads as the traversing guide. Application to synthetic and real data from bacterial isolate genomes show improved accuracy while still maintaining a low computational cost. npGraph also provides a graphical user interface (GUI) which provides a real-time visualisation of the progress of assembly. The tool and source code is available at https://github.com/hsnguyen/assembly.  相似文献   

18.
19.
Recent progress in predicting RNA structure is moving towards filling the ‘gap’ in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号