首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species interactions alter evolutionary responses to a novel environment   总被引:1,自引:0,他引:1  
Studies of evolutionary responses to novel environments typically consider single species or perhaps pairs of interacting species. However, all organisms co-occur with many other species, resulting in evolutionary dynamics that might not match those predicted using single species approaches. Recent theories predict that species interactions in diverse systems can influence how component species evolve in response to environmental change. In turn, evolution might have consequences for ecosystem functioning. We used experimental communities of five bacterial species to show that species interactions have a major impact on adaptation to a novel environment in the laboratory. Species in communities diverged in their use of resources compared with the same species in monocultures and evolved to use waste products generated by other species. This generally led to a trade-off between adaptation to the abiotic and biotic components of the environment, such that species evolving in communities had lower growth rates when assayed in the absence of other species. Based on growth assays and on nuclear magnetic resonance (NMR) spectroscopy of resource use, all species evolved more in communities than they did in monocultures. The evolutionary changes had significant repercussions for the functioning of these experimental ecosystems: communities reassembled from isolates that had evolved in polyculture were more productive than those reassembled from isolates that had evolved in monoculture. Our results show that the way in which species adapt to new environments depends critically on the biotic environment of co-occurring species. Moreover, predicting how functioning of complex ecosystems will respond to an environmental change requires knowing how species interactions will evolve.  相似文献   

2.
The effect of amino acids was examined on the production of l-lysine by AEC resistant mutant of B. lactofermentum. Among amino acids tested, only leucine showed strong specific inhibition. In order to release the production of l-lysine from this negative effect of leucine, leucine auxotrophs were derived from AEC resistant strain of B. lactofermentum. Most of these leucine auxotrophs produced larger amount of l-lysine (maximally 41 mg/ml) than the parental strain which produced about 18 mg/ml of l-lysine. It was confirmed that leucine auxotrophs derived from AEC resistant mutant of other glutamate producing bacteria, B. saccharolyticum and Corynebacterium glutamicum. These results suggested that leucine might directly or indirectly affect the biosynthesis of lysine.

However, this increase in lysine productivity of leucine auxotrophs could not be explained by the alteration of aspartokinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3). These enzymes are key enzymes in lysine and threonine biosynthesis, respectively.  相似文献   

3.
Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.  相似文献   

4.
Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment.  相似文献   

5.
Very few studies have experimentally assessed the evolutionary effects of species interactions within the same trophic level. Here we show that when Serratia marcescens evolve in multispecies communities, their growth rate exceeds the growth rate of the bacteria that evolved alone, whereas the biomass yield gets lower. In addition to the community effects per se, we found that few species in the communities caused strong effects on S. marcescens evolution. The results indicate that evolutionary responses (of a focal species) are different in communities, compared to species evolving alone. Moreover, selection can lead to very different outcomes depending on the community structure. Such context dependencies cast doubt on our ability to predict the course of evolution in the wild, where species often inhabit very different kinds of communities.  相似文献   

6.
Cobalamin (vitamin B12) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12. Extended coexistence can then drive gene loss, leading to greater algal–bacterial interdependence. In this study, we investigate how a recently evolved B12-dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12-independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12-dependent algae.  相似文献   

7.
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.Subject terms: Microbial ecology, Biofilms  相似文献   

8.
9.
New microbial communities often arise through the mixing of two or more separately assembled parent communities, a phenomenon that has been termed “community coalescence”. Understanding how the interaction structures of complex parent communities determine the outcomes of coalescence events is an important challenge. While recent work has begun to elucidate the role of competition in coalescence, that of cooperation, a key interaction type commonly seen in microbial communities, is still largely unknown. Here, using a general consumer-resource model, we study the combined effects of competitive and cooperative interactions on the outcomes of coalescence events. To do so, we simulate coalescence events between pairs of communities with different degrees of competition for shared carbon resources and cooperation through cross-feeding on leaked metabolic by-products (facilitation). We also study how structural and functional properties of post-coalescence communities evolve when they are subjected to repeated coalescence events. We find that in coalescence events, the less competitive and more cooperative parent communities contribute a higher proportion of species to the new community because of their superior ability to deplete resources and resist invasions. Consequently, when a community is subjected to repeated coalescence events, it gradually evolves towards being less competitive and more cooperative, as well as more speciose, robust and efficient in resource use. Encounters between microbial communities are becoming increasingly frequent as a result of anthropogenic environmental change, and there is great interest in how the coalescence of microbial communities affects environmental and human health. Our study provides new insights into the mechanisms behind microbial community coalescence, and a framework to predict outcomes based on the interaction structures of parent communities.  相似文献   

10.
Red pigment production in yeast cells with adel or ade2 mutations has been exploited to develop a method of identifying specific amino acid auxotrophs. Amino acid auxotrophs carrying mutations in adel or ade2 show delayed pigment production at sub-optimal amino acid levels. This delay allows selection of amino acid auxotrophs following mutagenesis, since red pigment is produced in prototrophs whilst auxotrophs remain white. This differential colour reaction has been applied to select leucine, lysine and serine auxotrophs. Large numbers of colonies could easily be screened without the need for extensive replica plating.  相似文献   

11.
Chemically mediated interactions are hypothesized to be essential for ecosystem functioning as co-occurring organisms can influence the performance of each other by metabolic means. A metabolomics approach can support a better understanding of such processes but many problems cannot be addressed due to a lack of appropriate co-culturing and sampling strategies. This is particularly true for planktonic organisms that live in complex but very dilute communities in the open water. Here we present a co-culturing device that allows culturing of microalgae and bacteria that are physically separated but can exchange dissolved or colloidal chemical signals. Identical growth conditions for both partners as well as high metabolite diffusion rates between the culturing chambers are ensured. This setup allowed us to perform a metabolomic survey of the effect of the bacterium Dinoroseobacter shibae on the diatom Thalassiosira pseudonana. GC–MS measurements revealed a pronounced influence of the bacterium on the metabolic profile of T. pseudonana cells with especially intracellular amino acids being up-regulated in co-cultures. Despite the influence on diatom metabolism, the bacterium has little influence on the growth of the algae. This might indicate that the observed metabolic changes represent an adaptive response of the diatoms. Such interactions might be crucial for metabolic fluxes within plankton communities.  相似文献   

12.
Natural heterozygosity in Candida albicans.   总被引:24,自引:8,他引:16       下载免费PDF全文
We subjected 16 Candida albicans clinical isolates to ultraviolet radiation and tested the survivors for auxotrophy. Six isolates displayed strongly biased auxotroph spectra: three yielded methionine auxotrophs, two yielded both isoleucine-valine and adenine auxotrophs, and one yielded lysine auxotrophs. We present evidence that auxotrophs arise by segregation from naturally occurring heterozygous states. The remaining isolates yielded few or no auxotrophs in an arbitrary sample (greater than 2,500) of survivors of irradiation. Our experiments indicate that C. albicans is diploid, although aneuploidy (2n + i) cannot be rigorously excluded. We discuss the possible utility of heterozygosity as a marker in epidemiological studies, and we discuss a rationale for the frequent occurrence of heterozygosity.  相似文献   

13.
14.
A metabolic reaction model was developed for the lysine fermentation process by Corynebacterium glutamicum AJ-3462 to estimate the physiological state of the cells-that is, the growth and production activity, and the flux distribution of metabolites-from on-line measurable rates only. First, the extended Kalman filter was applied to eliminate noise in the measured rates. Then, using the metabolic reaction model, the lysine production rate and flux distribution were calculated. The estimation results allowed the physiological state of lysine production to be recognized, and an appropriate measure corresponding to the estimated state, such as intermittent addition of glucose and/or leucine, to be taken to maintain a high level of lysine productivity in batch culture. Finally, application of the recognition system enabled lysine to be produced from glucose at a higher yield than that from glucose- or leucine-limited exponential fed-batch cultures. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 170-181, 1997.  相似文献   

15.
Microbial communities are comprised of many species that coexist on small spatial scales. This is difficult to explain because many interspecies interactions are competitive, and ecological theory predicts that one species will drive the extinction of another species that competes for the same resource. Conversely, evolutionary theory proposes that natural selection can lead to coexistence by driving competing species to use non-overlapping resources. However, evolutionary escape from extinction may be slow compared to the rate of competitive exclusion. Here, we use experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae to study the evolution of coexistence in species that compete for resources. We find that while E. coli usually outcompetes S. cerevisiae in co-culture, a few populations evolved stable coexistence after ~1000 generations of coevolution. We sequenced S. cerevisiae and E. coli populations, identified multi-hit genes, and engineered alleles from these genes into several genetic backgrounds, finding that some mutations modified interactions between E. coli and S. cerevisiae. Together, our data demonstrate that coexistence can evolve, de novo, from intense competition between two species with no history of coevolution.Subject terms: Molecular evolution, Microbial ecology  相似文献   

16.
马跃维  丁文冕  王跃澎  原野  黄艳燕  南蓬 《生态学报》2023,43(19):8122-8138
马里亚纳海沟是世界已知最深的海沟,其寡营养、高压、低温、低氧等极端的深海环境孕育出独特的细菌群落结构及多样性特征。选取寡营养培养基对马里亚纳海沟海水及表层沉积物分别进行液体共培养,并在不同培养阶段取样进行高通量测序,分析细菌群落结构组成及其多样性的动态变化,探讨微生物之间可能的互作关系。研究结果表明:液体共培养样品中一共检测到19个门、34个纲、76个目、131个科、227个属的细菌,其中变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为优势菌群,其次为厚壁菌门(Firmicutes);与其他样品相比,1000米海水样品中细菌群落的多样性最高,并且蓝细菌门(Cyanobacteria)具有更高的相对丰度。共培养样品中细菌丰富度、多样性、群落结构均随培养时间而改变,其中共培养中期样品的细菌多样性较高;表层沉积物样本中,盐单胞菌属(Halomonas)可能由于较强的竞争能力在共培养后期占据优势地位。基因功能预测与代谢通路富集结果显示,随着共培养时间的增加,微生物生长相关的代谢通路丰度明显下降,而与互作相关的代谢通路丰度明显增加。共培养样品检测到的细菌多样性远高于单独分离培养的多样性,仅有少量菌属为单独分离培养与共培养样品均检测到的共有属。综上所述,马里亚纳海沟细菌群落中存在竞争、互利共生的相互作用,共培养法有利于揭示细菌间的互作关系。研究为深渊及深海等极端环境下微生物生态系统组成及维持奠定了理论基础,也为进一步研究极端微生物的生存策略提供了科学指导。  相似文献   

17.
Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant–microbe interactions.  相似文献   

18.
Aims The relative plant type sensitivity and selected community interactions under increased UV-B radiation where examined. Specifically, we investigated: (i) if there are differences among growth forms in regard to their sensitivity to UV-B radiation, (ii) if increased UV-B radiation influences the plant competitive balance in plant communities and (iii) the response mechanisms of the UV-B radiation-sensitive species that might increase their fitness.Methods To answer our research questions, we used a mechanistic model that, for the first time, integrated the effects of increased UV-B radiation from molecular level processes, whole plant growth and development, and community interactions.Important findings In the model simulations, species types exhibited different levels of sensitivity to increased UV-B radiation. Summer C3 and C4 annuals showed similar growth inhibition rates, while biennials and winter C3 annuals were the most sensitive. Perennials exhibited inhibitions in growth only if increased UV-B radiation results in increases in metabolic rates. In communities, species sensitive to UV-B radiation may have a competitive disadvantage compared to resistant plant species. But, sensitive species may have a wide array of responses that can increase their fitness and reproductive success in the community, such as, increased secondary metabolites production, changes in timing of emergence and reproduction, and changes in seed size. While individual plants may exhibit significant inhibitions in growth and development, in communities, these inhibitions can be mitigated by small morphological and physiological adaptations. Infrequent or occasional increased UV-B radiation events should not have any lasting effect on the structure of the community, unless other environmental factors are perturbing the dynamic equilibrium.  相似文献   

19.
An alternative consolidated bioprocessing approach is the use of a co-culture containing cellulolytic and solventogenic clostridia. It has been demonstrated that the rate of cellulose utilization in the co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum is improved compared to the mono-culture of C. cellulolyticum, suggesting the presence of syntrophy between these two species. However, the metabolic interactions in the co-culture are not well understood. To understand the metabolic interactions in the co-culture, we developed a genome-scale metabolic model of C. cellulolyticum comprising of 431 genes, 621 reactions, and 603 metabolites. The C. cellulolyticum model can successfully predict the chemostat growth and byproduct secretion with cellulose as the substrate. However, a growth arrest phenomenon, which occurs in batch cultures of C. cellulolyticum at cellulose concentrations higher than 6.7 g/L, cannot be predicted by dynamic flux balance analysis due to the lack of understanding of the underlying mechanism. These genome-scale metabolic models of the pure cultures have also been integrated using a community modeling framework to develop a dynamic model of metabolic interactions in the co-culture. Co-culture simulations suggest that cellobiose inhibition cannot be the main factor that is responsible for improved cellulose utilization relative to mono-culture of C. cellulolyticum.  相似文献   

20.
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.Subject terms: Microbial ecology, Microbial ecology, Microbial ecology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号