首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate tolerance developed after persistent nitroglycerin (GTN) exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3) activity. Caveolin-1 (Cav-1) is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae) and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48–72 h resulted in nitrosation and depletion (>50%) of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%), and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations). In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.  相似文献   

2.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3) mediates 1α,25(OH)2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3 +/− heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3 +/− mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3 +/− mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3 +/− mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3 +/− heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH)2D3’s actions in regulating skeletal development.  相似文献   

3.
Subtle Neuromuscular Defects in Utrophin-deficient Mice   总被引:9,自引:1,他引:8       下载免费PDF全文
Utrophin is a large cytoskeletal protein that is homologous to dystrophin, the protein mutated in Duchenne and Becker muscular dystrophy. In skeletal muscle, dystrophin is broadly distributed along the sarcolemma whereas utrophin is concentrated at the neuromuscular junction. This differential localization, along with studies on cultured cells, led to the suggestion that utrophin is required for synaptic differentiation. In addition, utrophin is present in numerous nonmuscle cells, suggesting that it may have a more generalized role in the maintenance of cellular integrity. To test these hypotheses we generated and characterized utrophin-deficient mutant mice. These mutant mice were normal in appearance and behavior and showed no obvious defects in muscle or nonmuscle tissue. Detailed analysis, however, revealed that the density of acetylcholine receptors and the number of junctional folds were reduced at the neuromuscular junctions in utrophin-deficient skeletal muscle. Despite these subtle derangements, the overall structure of the mutant synapse was qualitatively normal, and the specialized characteristics of the dystrophin-associated protein complex were preserved at the mutant neuromuscular junction. These results point to a predominant role for other molecules in the differentiation and maintenance of the postsynaptic membrane.  相似文献   

4.
Mice that are genetically deficient in UDP-galactose: ceramide galactosyltransferase are unable to synthesize galactosylceramide. Consequently, sulfatide, which can be synthesized only by sulfation of galactosylceramide, is also totally absent in affected mouse brain. -Hydroxy fatty acid-containing glucosylceramide partially replaces the missing galactosylceramide. A substantial proportion of sphingomyelin, which normally contains only non-hydroxy fatty acids, also contains -hydroxy fatty acids. These findings indicate that -hydroxy fatty acid-containing ceramide normally present only in galactosylceramide and sulfatide is diverted to other compounds because they cannot be synthesized into galactosylceramide due to the lack of the galactosyltransferase. We have examined brain gangliosides in order to determine if -hydroxy fatty acid-containing glucosylceramide present in an abnormally high concentration is also incorporated into gangliosides. The brain ganglioside composition, however, is entirely normal in both the total amount and molecular distribution in these mice. One feasible explanation is that UDP-galactose: glucosylceramide galactosyltransferase does not recognize -hydroxy fatty acid-containing glucosylceramide as acceptor. This analytical finding is consistent with the relative sparing of gray matter in the affected mice and provides an insight into sphingolipid metabolism in the mouse brain.  相似文献   

5.
Granins are major constituents of dense-core secretory granules in neuroendocrine cells, but their function is still a matter of debate. Work in cell lines has suggested that the most abundant and ubiquitously expressed granins, chromogranin A and B (CgA and CgB), are involved in granulogenesis and protein sorting. Here we report the generation and characterization of mice lacking chromogranin B (CgB-ko), which were viable and fertile. Unlike neuroendocrine tissues, pancreatic islets of these animals lacked compensatory changes in other granins and were therefore analyzed in detail. Stimulated secretion of insulin, glucagon and somatostatin was reduced in CgB-ko islets, in parallel with somewhat impaired glucose clearance and reduced insulin release, but normal insulin sensitivity in vivo. CgB-ko islets lacked specifically the rapid initial phase of stimulated secretion, had elevated basal insulin release, and stored and released twice as much proinsulin as wildtype (wt) islets. Stimulated release of glucagon and somatostatin was reduced as well. Surprisingly, biogenesis, morphology and function of insulin granules were normal, and no differences were found with regard to β-cell stimulus-secretion coupling. We conclude that CgB is not required for normal insulin granule biogenesis or maintenance in vivo, but is essential for adequate secretion of islet hormones. Consequentially CgB-ko animals display some, but not all, hallmarks of human type-2 diabetes. However, the molecular mechanisms underlying this defect remain to be determined.  相似文献   

6.
Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.  相似文献   

7.
The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and composition.  相似文献   

8.
9.
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.  相似文献   

10.
11.

Objective

IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s) as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.

Methods and Results

Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apo)E deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC) natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.

Conclusions

The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.  相似文献   

12.
During mammalian development, androgens produced by the fetal testis are the most important hormones controlling the masculinization of the reproductive tract and the genitalia. New findings show that the male germ line is the most sensitive to anti-androgenic endocrine disruptors during the embryonic period. In a recent study, we reported that endogenous androgens physiologically control germ cell growth in the male mouse fetus during early fetal life. In the present study, we extended this result by showing the presence of a functional androgen receptor in the gonocytes in the latter part of the fetal life. We also studied the effect of androgens on the development of the somatic testicular cells using the Tfm mice which carry a naturally inactivating mutation of the androgen receptor. Fetal Leydig cell are largely independent of endogenous androgens during fetal development whereas fetal Sertoli cell number is decreased following a default of peritubular myoid cells differenciation. They also point to the gonocyte as a special target for androgens during the embryonic period and indicate a novel mechanism of androgen action on gonocytes. Elucidation of this new pathway in the fetal testis will clarify not only fetal testis physiology but also the effects of environmental anti-androgens that act during fetal life and open new perspectives for future investigations into the sensitivity of fetal germ cell to androgens.  相似文献   

13.
14.
We recently identified a novel germinal center GTPase, SLIP-GC, that localizes to replication factories in B cells and that, when reduced, induces DNA breaks in lymphoma B cell lines in an activation-induced deaminase (AID)-dependent manner. Herein, we generated mice deficient in SLIP-GC and examined the impact of SLIP-GC deficiency in immunoglobulin hypermutation and class switch recombination, both AID-dependent mechanisms. SLIP-GC-deficient mice experienced a substantial increase in mutations at G:C base pairs at the region downstream of JH4 in the immunoglobulin heavy chain locus. This change was reflected in the overall mutation frequency, and it was associated with an increase in transitions from G:C base pairs, a hallmark of AID-mediated deamination during replication. In addition, G:C transitions at non-immunoglobulin loci also increased in these mice. Given the intracellular localization of SLIP-GC to sites of replicating DNA, these results suggest that SLIP-GC protects replicating DNA from AID-mediated deamination of cytosines in both strands.  相似文献   

15.
16.
Culturing retinoblastoma tumor cells in defined stem cell media gives rise to primary tumorspheres that can be grown and maintained for only a limited time. These cultured tumorspheres may exhibit markedly different cellular phenotypes when compared to the original tumors. Demonstration that cultured cells have the capability of forming new tumors is important to ensure that cultured cells model the biology of the original tumor. Here we present a protocol for propagating human retinoblastoma tumors in vivo using Rag2-/- immune deficient mice. Cultured human retinoblastoma tumorspheres of low passage or cells obtained from freshly harvested human retinoblastoma tumors injected directly into the vitreous cavity of murine eyes form tumors within 2-4 weeks. These tumors can be harvested and either further passaged into murine eyes in vivo or grown as tumorspheres in vitro. Propagation has been successfully carried out for at least three passages thus establishing a continuing source of human retinoblastoma tissue for further experimentation. Wesley S. Bond and Lalita Wadhwa are co-first authors.  相似文献   

17.

Background

According to the World Health Organization (WHO) there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP), also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones.

Methodology/Principal Findings

An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat.

Conclusions/Significance

In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6–7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.  相似文献   

18.
19.
20.
Gastrointestinal stromal tumors, which are thought to derive from interstitial cells of Cajal or their precursors, often harbor an oncogenic mutation of the KIT receptor tyrosine kinase. Sprouty homolog 4, a known negative regulator of ERK pathway, has been identified in the interstitial cells of Cajal in the KitK641E murine model of gastrointestinal stromal tumors. Sprouty homolog 4 was upregulated both at the mRNA and protein level in these cells, suggesting that Sprouty homolog 4 is downstream of oncogenic KIT activation and potentially engaged in the negative feedback loop of ERK activation in this model. Here, we used KitK641E heterozygous and Sprouty homolog 4 knock out animals to quantify interstitial cells of Cajal in situ, using quantitative immunofluorescence for the receptor tyrosine kinase Kit and for phosphodiesterase 3a (PDE3A). In the antrum of Sprouty homolog 4 knock out mice, hyperplasia of interstitial cells of Cajal was reminiscent of the KitK641E heterozygous mice antrum. Additionally, the density of interstitial cells of Cajal was higher in the colon of adult Sprouty homolog 4 knock out mice than in WT littermates, although hyperplasia seemed more severe in KitK641E heterozygous mice. Functional transit studies also show similarities between Sprouty homolog 4 knock out and KitK641E heterozygous mice, as the total transit time in 9 month old animals was significantly increased in both genotypes compared to WT littermates. We concluded that the lack of Sprouty homolog 4 expression leads to hyperplasia of the interstitial cells of Cajal and is functionally associated with a delayed transit time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号