首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Machine perfusion at subnormothermic temperature (20°C), MP20, was developed by Vairetti et al. and showed to afford a better preservation of fatty livers respect to traditional cold storage (CS) in terms of enzyme release into the perfusate and bile, glycogen stores, energy charge and oxidative stress. Here we investigated whether it also caused decreased cell death by apoptosis. Fatty and lean Zucker rats were submitted to MP20 or CS for 6 h and reperfused normothermically for 2 h. Apoptotic cells were revealed by immunohistochemistry of activated caspase-3 and M30 (new epitope on CK18 degraded by caspase-3) and by the TUNEL assay. Portal pressure was also determined. A statistically significant reduction of hepatocyte apoptosis, but especially of sinusoidal cells was determined for fatty livers submitted to MP20 respect to CS. Portal pressure was significantly lower after MP20 respect to CS. The reduction of sinusoidal cell death by apoptosis without need for anti-apoptotic therapies appears particularly positive since apoptotic sinusoidal cells hinder microcirculation in the sinusoids and are thrombogenic. These results further confirm the potential of MP20 for preserving fatty livers that would be otherwise discarded as grafts, and thus for increasing the donor pool for liver transplantation.  相似文献   

2.
Biliary complications often lead to acute and chronic liver injury after orthotopic liver transplantation (OLT). Bile composition and secretion depend on the integrated action of all the components of the biliary tree, starting from hepatocytes. Fatty livers are often discarded as grafts for OLT, since they are extremely vulnerable to conventional cold storage (CS). However, the insufficiency of donors has stimulated research to improve the usage of such marginal organs as well as grafts. Our group has recently developed a machine perfusion system at subnormothermic temperature (20°C; MP20) that allows a marked improvement in preservation of fatty and even of normal rat livers as compared with CS. We sought to evaluate the response of the biliary tree of fatty liver to MP20, and a suitable marker was essential to this purpose. Alkaline phosphatase (AlkP, EC 3.1.3.1), frequently used as marker of membrane transport in hepatocytes and bile ducts, was our first choice. Since no histochemical data were available on AlkP distribution and activity in fatty liver, we have first settled to investigate AlkP activity in the steatotic liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. The AlkP reaction in Wistar rats was in accordance with the existing data and, in particular, was present in bile canaliculi of hepatocytes in the periportal region and midzone, in the canals of Hering and in small bile ducts but not in large bile ducts. In lean ZR liver the AlkP reaction in Hering canals and small bile ducts was similar to Wistar rat liver but hepatocytes had lower canalicular activity and besides presented moderate basolateral reaction. The difference between lean Zucker and Wistar rats, both phenotypically normal animals, could be related to the fact that lean Zucker rats are genotypically heterozygous for a recessive mutated allele. In fatty liver, the activity in ductules and small bile ducts was unchanged, but most hepatocytes were devoid of AlkP activity with the exception of clusters of macrosteatotic hepatocytes in the mid-zone, where the reaction was intense in basolateral domains and in distorted canaliculi, a typical pattern of cholestasis. The interpretation of these data was hindered by the fact that the physiological role of AlkP is still under debate. In the present study, the various functions proposed for the role of the enzyme in bile canaliculi and in cholangiocytes are reviewed. Independently of the AlkP role, our data suggest that AlkP does not seem to be a reliable marker to study the initial step of bile production during OLT of fatty livers, but may still be used to investigate the behaviour of bile ductules and small bile ducts.  相似文献   

3.
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille''s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.Key words: Dipeptidylpeptidase-IV, fatty liver, incretins, neuropeptides, biliary tree, bile canaliculi, hepatocytes.  相似文献   

4.
We previously reported that machine perfusion (MP) performed at 20 °C enhanced the preservation of steatotic rat livers. Here, we tested whether rat livers retrieved 30 min after cardiac arrest (NHBDs) were better protected by MP at 20 °C than with cold storage. We compared the recovery of livers from NHBDs with organs obtained from heart beating donors (HBDs) preserved by cold storage. MP technique: livers were perfused for 6 h with UW-G modified at 20 °C. Cold storage: livers were perfused in situ and preserved with UW solution at 4 °C for 6 h. Both MP and cold storage preserved livers were reperfused with Krebs-Heinselet buffer (2 h at 37 °C). AST and LDH release and mitochondrial glutamate dehydrogenase (GDH) levels were evaluated. Parameters assessed included: bile production and biliary enzymes; tissue ATP; reduced and oxidized glutathione (GSH/GSSG); protein–SH group concentration. Livers preserved by MP at 20 °C showed significantly lower hepatic damage at the end of reperfusion compared with cold storage. GDH release was significantly reduced and bile production, ATP levels, GSH/GSSG and protein–SH groups were higher in livers preserved by MP at 20 °C than with cold storage. The best preserved morphology and high glycogen content was obtained with livers submitted to MP at 20 °C. Liver recovery using MP at 20 °C was comparable to recovery with HBDs. MP at 20 °C improves cell survival and gives a better-quality of preservation for livers obtained from NHBDs and may provide a new method for the successful utilization of marginal livers.  相似文献   

5.
We compared the susceptibility of liver grafts from lean and obese Zucker rats to preservation injury, using two organ-preservation techniques: conventional static preservation (SP) and machine perfusion (MP) preservation. SP: livers preserved by UW solution at 4, 8 or 20 °C for 6-h. MP: livers perfused for 6-h with an improved oxygenated Krebs–Henseleit solution (KH) at 4, 8 or 20 °C. Reperfusion with KH (2-h) was performed either with the SP or MP preserved livers. Fatty livers tolerate SP poorly at 4, 8 and 20 °C as compared with MP at the same temperatures. SP induced a decrease in the ATP/ADP ratio both at 8 and 20 °C in obese rats while an increase in energy status was found with MP at 8 and 20 °C. Nitrate/nitrite (NOx) concentration was higher and bile flow lower in livers preserved with SP than MP. In lean rats, no differences were observed between MP and SP as regards enzyme release, bile production and NOx levels except for SP at 20 °C in which high enzyme release and low bile flow were observed. In lean rats ATP/ADP was higher and NOx was lower with MP at 20 °C than with SP at 20 °C. To optimize steatotic liver preservation SP should be avoided because it is particularly detrimental as compared with MP.  相似文献   

6.
There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.  相似文献   

7.
Extracellular cold-inducible RNA-binding protein (CIRP) is a proinflammatory mediator that aggravates ischaemia-reperfusion injury (IRI). Normothermic machine perfusion (NMP) could effectively alleviate the IRI of the liver, but the underlying mechanism remains to be explored. We show that human DCD livers secreted a large amount of CIRP during static cold storage (CS), which is released into the circulation after reperfusion. The expression of CIRP was related to postoperative IL-6 levels and liver function. In a rat model, the CIRP expression was upregulated during warm ischaemia and cold storage. Then, rat DCD livers were preserved using CS, hypothermic oxygenated machine perfusion (HOPE) and NMP. C23, a CIRP inhibitor, was administrated in the HOPE group. Compared with CS, NMP significantly inhibited CIRP expression and decreased oxidative stress by downregulating NADPH oxidase and upregulating UCP2. NMP markedly inhibited the mitochondrial fission-related proteins Drp-1 and Fis-1. Further, NMP increased the mitochondrial biogenesis-related protein, TFAM. NMP significantly reduced inflammatory reactions and apoptosis after reperfusion, and NMP-preserved liver tissue had higher bile secretion and ICG metabolism compared to the CS group. Moreover, C23 administration attenuated IRI in the HOPE group. Additionally, HL-7702 cells were stimulated with rhCIRP and C23. High rhCIRP levels increased oxidative stress and apoptosis. In summary, NMP attenuates the IRI of DCD liver by inhibiting CIRP-mediated oxidative stress and mitochondrial fission.  相似文献   

8.
The relative importance of fatty acid synthesis in triglyceride secretion by perfused livers from lean (normal control) and obese Zucker rats was investigated. Livers from fed animals were perfused in a recirculating system with tritiated water and a constant infusion of oleic acid. Triglyceride secretion was 5 times greater and cholesterol secretion was 35% greater in the obese rat livers. The very-low-density lipoprotein hypersecreted by perfused livers from obese rats contained more apolipoprotein B and exhibited an increased B-48/B-100 ratio. Apo-B was also elevated in the hypertriglyceridemic plasma of obese rats in both fed and fasting states. The very-low-density lipoprotein isolated therefrom was likewise characterized by an increased B-48/B-100 ratio. Ketogenesis was depressed 40% in the obese rat livers and increased hepatic malonyl-CoA was implicated in this alteration. The de novo synthesis and secretion of newly synthesized cholesterol was moderately increased in the perfused livers from obese rats. Tritium incorporation into fatty acids was 15 times greater in the obese genotype. Most of the synthesized fatty acids remained in the liver and were recovered after perfusion in triglyceride and phospholipids. Newly synthesized fatty acids accounted for only 3 and 15% of the triglyceride secreted by the lean and obese rat livers, respectively. A large portion of the secreted triglyceride fatty acids was derived from endogenous liver lipids. When the turnover of newly synthesized fatty acids in these pools was considered, the contribution of de novo fatty acid synthesis to triglyceride secretion was estimated to be 9% in the lean and 44% in the obese rat livers. Therefore, the altered partition of free fatty acids (Fukuda, N., Azain, M. J., and Ontko, J. A. (1982) J. Biol. Chem. 257, 14066-14072) and increased fatty acid synthesis are both major determinants of the hypersecretion of triglyceride-rich lipoproteins by the liver in the genetically obese Zucker rat.  相似文献   

9.
The purpose of these studies was to determine if the utilization of ketone bodies as a carbon source for lipogenesis could account for the decreased ketone body production by livers of obese Zucker rats, as well as contribute to the enhanced rates of fatty acid synthesis observed in these animals. Ketone body production was decreased from 822 mumol/liver in the lean to 538 mumol/liver in the obese genotype (P less than 0.05). The incorporation of ketone bodies into fatty acids was significantly greater in the obese rat liver (lean, 1.95 mumol of ketone bodies/liver, versus obese, 35.22 mumol/liver; P less than 0.025). The relative contribution of this pathway to the overall rate of fatty acid synthesis was not affected by genotype and accounted for only 3 to 4% of the fatty acids synthesized. The incorporation of ketone bodies into digitonin precipitable sterols was similar in the two genotypes (lean, 4.5 mmol/liver, versus obese 4.7 mumol/liver; NS). This accounted for 9.2 and 6.3% of the total sterol synthesis in lean and obese rat livers, respectively. The total incorporation of ketone bodies into lipid was 7.5 mumols in the lean rat livers and 42.0 mumoles in the obese (P less than 0.025). The net increase was 35 mumoles incorporated, whereas the net decrease in ketogenesis was 284 mumoles. Thus, although ketone body carbon utilization for lipid synthesis was increased in the liver of the obese rats, this pathway could only account for a fraction of the genotypic difference in ketone body production and was of relatively minor importance as a source of carbon for hepatic fatty acid synthesis in both lean and obese rats.  相似文献   

10.
Previous morphological studies failed to show appreciable injury of biliary epithelial cells (BEC) after cold ischemia of rat liver, although recent evidence indicated that BEC integrity and function were impaired in this model. We tested the hypothesis that analysis of bile for enzymes, such as lactate dehydrogenase (LDH), alanine transaminase (ALT), and aspartate transaminase (AST), can be used for assessing cold ischemic injury of BEC. Furthermore, we examined whether biliary gamma-glutamyltransferase (GGT) reflects warm ischemic injury of BEC and whether normothermic reperfusion aggravates the negative effect of cold ischemia on BEC integrity and function. Rat livers were reperfused after different periods of cold or warm ischemia using a blood-free perfusion model. Compared with controls, perfusate LDH, ALT, and AST levels and parameters of hepatocyte function, including hepatocyte tight junction permeability, were not significantly altered by 18-h cold ischemia. On the other hand, 9-h cold ischemia markedly increased biliary LDH, ALT, and AST levels. However, only LDH release into the bile was strongly dependent on the time of cold storage. Biliary GGT, LDH, and glucose levels decreased during the reperfusion period following 18-h cold ischemia. The results suggest that biliary LDH can be used for assessing injury of BEC in cold-preserved livers and that normothermic reperfusion does not aggravate preservation-induced injury of BEC after cold ischemic storage.  相似文献   

11.
12.
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix‐assisted laser desorption/ionization time‐of‐flight spectrometry (MALDI‐TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.  相似文献   

13.
The objective of this experiment was to determine the effect of polyunsaturated fatty acids on gene expression for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, pyruvate kinase, and phosphoenolpyruvate carboxykinase in obese mice. Eight-week-old female lean and obese mice were fed semi-purified diets containing 20% (w/w) fat of either high or low polyunsaturated to saturated (P/S) fatty acid ratio for four weeks. Total RNA was isolated from liver and was hybridized to cDNA probes for the above enzymes. Consumption of a high P/S diet decreased mRNA levels for all the lipogenic enzymes studied in both lean and obese mice. Compared to lean mice, obese mice exhibited a higher mRNA level for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, and pyruvate kinase in animals fed either a high or low P/S diet. Enzyme-specific activities followed the same profile as the mRNA levels in both lean and obese mice fed a high or low P/S diet. The decrease in liver fatty acid synthase mRNA level was more pronounced in lean mice compared to obese mice, suggesting that the obese mice may be more resistant to polyunsaturated fatty acid feedback control of gene expression.  相似文献   

14.
1. Fatty acid synthesis, measured in the perfused liver of genetically obese (ob/ob) mice with 3H2O or [14C]actate, did not show the inhibition by [8-arginine]vasopressin (antidiuretic hormone) that is observed in livers from normal mice. 2. Hepatic glycogen breakdown in obese mice was stimuulated by vasopressin, but not as extensively as in lean mice. 3. If obese mice received a restricted amount of food, then fatty acid synthesis still did not respond to vasopressin, but glycogen breakdown was fully stimulated. 4. Cholesterol synthesis was not inhibited by vasopressin in livers from obese mice. 5. Vasopressin inhibited fatty acid synthesis in intact lean mice, but not in obese animals. 6. These results suggest that genetic obesity could be due to an inborn error within the mechanisms (other than adenylate cyclase) which mediate responses to extracellular effectors.  相似文献   

15.
The expression and localization of the pancreatic and salivary isozymes of alpha-amylase in the intrahepatic biliary epithelium and hepatocytes were examined by the immunohistochemical method with polyclonal and monoclonal antibodies in 45 normal autopsied human livers. Immunoelectron microscopic studies with the protein A-gold method were performed with the monoclonal antibodies (MAb) on seven of the livers. The intrahepatic biliary system was divided into large ducts, septal ducts, interlobular ducts, bile ductules, and peribiliary glands. Immunohistochemically, pancreatic isozyme was observed in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, and peribiliary glands in almost all livers. Interlobular ducts expressed pancreatic isozyme in only four (9%) livers. Bile ductules and hepatocytes were negative for pancreatic isozyme in all cases. Expression of salivary isozyme was observed in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, interlobular ducts, bile ductules, and peribiliary glands in almost all livers, although the expression in interlobular ducts and bile ductules was weak. Hepatocytes were weakly positive for salivary isozyme. Immunoelectron microscopy revealed that both pancreatic and salivary isozymes were located in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, and peribiliary glands, and that hepatocytes had no pancreatic isozyme but contained salivary isozyme. These data suggest that pancreatic and salivary isozymes of alpha-amylase are produced by the intrahepatic biliary epithelium and secreted into intrahepatic biliary lumens, and that they may play an important role in the physiology of the intrahepatic biliary tree and hepatic bile. It is also suggested that hepatocytes produce a small amount of salivary alpha-amylase that may be secreted into the biliary tree.  相似文献   

16.
The intrahepatic biliary ducts transport bile produced by the hepatocytes out of the liver. Defects in biliary cell differentiation and biliary duct remodeling cause a variety of congenital diseases including Alagille Syndrome and polycystic liver disease. While the molecular pathways regulating biliary cell differentiation have received increasing attention (Lemaigre, 2010), less is known about the cellular behavior underlying biliary duct remodeling. Here, we have identified a novel gene, claudin 15-like b (cldn15lb), which exhibits a unique and dynamic expression pattern in the hepatocytes and biliary epithelial cells in zebrafish. Claudins are tight junction proteins that have been implicated in maintaining epithelial polarity, regulating paracellular transport, and providing barrier function. In zebrafish cldn15lb mutant livers, tight junctions are observed between hepatocytes, but these cells show polarization defects as well as canalicular malformations. Furthermore, cldn15lb mutants show abnormalities in biliary duct morphogenesis whereby biliary epithelial cells remain clustered together and form a disorganized network. Our data suggest that Cldn15lb plays an important role in the remodeling process during biliary duct morphogenesis. Thus, cldn15lb mutants provide a novel in vivo model to study the role of tight junction proteins in the remodeling of the biliary network and hereditary cholestasis.  相似文献   

17.
Impaired activity of the uncoupling protein (UCP) family has been proposed to promote obesity development. The present study examined differences in UCP responses to cold exposure between leptin-resistance obese (db/db) mice and their lean (C57Ksj) littermates. Basal UCP1 and UCP3 mRNA expression in brown adipose tissue was lower in obese mice compared with lean mice, but UCP2 expression in white adipose tissue (WAT) was higher. Basal skeletal muscle UCP3 did not change remarkably. The UCP family mRNAs, which were upregulated 12 and 24 h after cold exposure (4 degrees C), were returned to prior levels 12 h after rewarming exposure (21 degrees C) in lean mice. The accelerating effects of cold exposure on the UCP family were impaired in db/db obese mice. Together with these changes, WAT lipoprotein lipase mRNA was downregulated, and the concentration of serum free fatty acid was increased in response to cold exposure in the lean mice but not in db/db obese littermates. The impaired function of the UCP family and diminished lipolysis in response to cold exposure indicate that the reduced lipolytic activity may contribute to the inactivation of the UCP family in db/db obese mice.  相似文献   

18.
Livers from fed, fasted (48 h) and glucose-fed rabbits were preserved for 24 and 48 h by either simple cold storage (CS) or continuous machine perfusion (MP) with the University of Wisconsin preservation solutions. After preservation liver functions were measured by isolated perfusion of the liver (at 37 degrees C) for 2 h. Fasting caused an 85% reduction in the concentration of glycogen in the liver but no change in ATP or glutathione. Glucose feeding suppressed the loss of glycogen (39% loss). After 24 h preservation by CS livers from fed or fasted animals were similar including bile production (6.2 +/- 0.5 and 5.6 +/- 0.4 ml/2 h, 100 g, respectively), hepatocellular injury (LDH release = 965 +/- 100 and 1049 +/- 284 U/liter), and concentrations of ATP (1.17 +/- 0.15 and 1.18 +/- 0.04 mumol/g, glutathione (1.94 +/- 0.51 and 2.35 +/- 0.26 mumol/g, respectively), and K:Na ratio (6.7 +/- 1.0 and 7.7 +/- 0.5, respectively). After 48 h CS livers from fed animals were superior to livers from fasted animals including significantly more bile production (5.0 +/- 0.9 vs 2.0 +/- 0.3 ml/2 h, 100 g), less LDH release (1123 +/- 98 vs 3701 +/- 562 U/liter), higher concentration of ATP (0.50 +/- 0.16 vs 0.33 +/- 0.07 mumol/g) and glutathione (0.93 +/- 0.14 vs 0.30 +/- 0.13 mumol/g), and a larger K:Na ratio (7.4 vs 1.5). Livers from fed animals were also better preserved than livers from fasted animals when the method was machine perfusion. The decrease in liver functions in livers from fasted animals preserved for 48 h by CS or MP was prevented by feeding glucose. Glucose feeding increased bile formation after 48 h CS preservation from 2.0 +/- 0.3 (fasted) to 6.9 +/- 1.2 ml/2 h, 100 g; LDH release was reduced from 3701 +/- 562 (fasted) to 1450 +/- 154 U/liter; ATP was increased from 0.33 +/- 0.07 (fasted) to 1.63 +/- 0.18 mumol/g; glutathione was increased from 0.30 +/- 0.01 (fasted) to 2.17 +/- 0.30 mumol g; and K:Na ratio was increased from 1.5 +/- 0.9 to 5.3 +/- 1.0. This study shows that the nutritional status of the donor can affect the quality of liver preservation. The improvement in preservation by feeding rabbits only glucose suggests that glycogen is an important metabolite for successful liver preservation. Glycogen may be a source for ATP synthesis during the early period of reperfusion of preserved livers.  相似文献   

19.
Cold preservation and reperfusion of liver during transplantation are necessary steps in the procedure but which are also associated with damage to the organ. One aspect of this damage is thought to concern up-regulation of inflammatory markers, such as the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) on target cells in the liver. This aids sequestration of activated leucocytes, which promote inflammation, by a complex sequence of events, including free radical mediated damage. We have studied changes in ICAM-1 in rat liver as a consequence of cold preservation for various times, and also after warm reperfusion during isolated liver perfusion. We have also investigated the effects of the free radical scavenging agent (reduced glutathione-GSH) on the modulation of ICAM-1 expression after cold hypoxia and reperfusion. Livers were subjected to various regimes of cold preservation and reperfusion. Liver biopsies were taken at three time points (initial baseline on liver exposure; after organ flushing and post-storage at 0, 8, 16, and 24h cold hypoxia in University of Wisconsin solution; in the same livers after 1h warm reperfusion). The tissues were processed for frozen biopsy work, and frozen sections were stained using immunohistochemical methods, for blinded scoring by an independent observer. Positive controls were obtained by exposure to endotoxin lipopolysaccharide before liver flushing. ICAM-1 expression was low in control livers (0.33+/-0.21), and increased to near maximal (2.83+/-0.17) after endotoxin exposure. ICAM-1 expression increased progressively with cold preservation, reaching values of 1.17+/-0.31 and 1.83+/-0.31 after 16 and 24h, respectively (P<0.05 and 0.02 versus controls). Warm reperfusuion increased ICAM-1 expression in all flushed groups and with longer cold preservation was close to maximal (2.67+/-0.21 after 16h and 2.98+/-0.02 after 24h; P<0.001 in both cases). Addition of the free radical scavenger GSH prevented up-regulation of ICAM-1 in livers reperfused after flushing and cold storage for up to 8h; beyond this time, ICAM-1 expression still increased, such that by 24h cold preservation and reperfusion absence (2.98+/-0.02) or presence (2.67+/-0.21) made no difference. We conclude that liver ICAM-1 expression is demonstrably increased by progressive cold preservation and reperfusion, and is only marginally affected by addition of GSH during reperfusion. The model can be used to investigate other agents which might be more successful in preventing post-storage inflammatory damage.  相似文献   

20.
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号