首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centromeric region of human chromosome 21 comprises two long alphoid DNA arrays: the well homogenized and CENP-B box-rich alpha21-I and the alpha21-II, containing a set of less homogenized and CENP-B box-poor subfamilies located closer to the short arm of the chromosome. Continuous alphoid fragment of 100 monomers bordering the non-satellite sequences in human chromosome 21 was mapped to the pericentromeric short arm region by fluorescence in situ hybridization (alpha21-II locus). The alphoid sequence contained several rearrangements including five large deletions within monomers and insertions of three truncated L1 elements. No binding sites for centromeric protein CENP-B were found. We analyzed sequences with alphoid/non-alphoid junctions selectively screened from current databases and revealed various rearrangements disrupting the regular tandem alphoid structure, namely, deletions, duplications, inversions, expansions of short oligonucleotide motifs and insertions of different dispersed elements. The detailed analysis of more than 1100 alphoid monomers from junction regions showed that the vast majority of structural alterations and joinings with non-alphoid DNAs occur in alpha satellite families lacking CENP-B boxes. Most analyzed events were found in sequences located toward the edges of the centromeric alphoid arrays. Different dispersed elements were inserted into alphoid DNA at kinkable dinucleotides (TG, CA or TA) situated between pyrimidine/purine tracks. DNA rearrangements resulting from different processes such as recombination and replication occur at kinkable DNA sites alike insertions but irrespectively of the occurrence of pyrimidine/purine tracks. It seems that kinkable dinucleotides TG, CA and TA are part of recognition signals for many proteins involved in recombination, replication, and insertional events. Alphoid DNA is a good model for studying these processes.  相似文献   

2.
Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used to isolate large centromeric regions of human chromosomes 2, 5, 8, 11, 15, 19, 21 and 22 from human cells as well as monochromosomal hybrid cells. The alphoid DNA array was also isolated from the 12 Mb human mini-chromosome ΔYq74 that contained the minimum amount of alphoid DNA required for proper chromosome segregation. Preliminary results of the structural analyses of different centromeres are reported in this paper. The ability of the cloned human centromeric regions to support human artificial chromosome (HAC) formation was assessed by transfection into human HT1080 cells. Centromeric clones from ΔYq74 did not support the formation of HACs, indicating that the requirements for the existence of a functional centromere on an endogenous chromosome and those for forming a de novo centromere may be distinct. A construct with an alphoid DNA array from chromosome 22 with no detectable CENP-B motifs formed mitotically stable HACs in the absence of drug selection without detectable acquisition of host DNAs. In summary, our results demonstrated that TAR cloning is a useful tool for investigating human centromere organization and the structural requirements for formation of HAC vectors that might have a potential for therapeutic applications.  相似文献   

3.
Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric alpha-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans.  相似文献   

4.
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.  相似文献   

5.
Chromatin clusters containing CENP-A, a histone H3 variant, are found in centromeres of multicellular eukaryotes. This study examines the ability of alpha-satellite (alphoid) DNA arrays in different lengths to nucleate CENP-A chromatin and form functional kinetochores de novo. Kinetochore assembly was followed by measuring human artificial chromosome formation in cultured human cells and by chromatin immunoprecipitation analysis. The results showed that both the length of alphoid DNA arrays and the density of CENP-B boxes had a strong impact on nucleation, spreading and/or maintenance of CENP-A chromatin, and formation of functional kinetochores. These effects are attributed to a change in the dynamic balance between assembly of chromatin containing trimethyl histone H3-K9 and chromatin containing CENP-A/C. The data presented here suggest that a functional minimum core stably maintained on 30-70 kb alphoid DNA arrays represents an epigenetic memory of centromeric chromatin.  相似文献   

6.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

7.
Efficient construction of BAC-based human artificial chromosomes (HACs) requires optimization of each key functional unit as well as development of techniques for the rapid and reliable manipulation of high-molecular weight BAC vectors. Here, we have created synthetic chromosome 17-derived alpha-satellite arrays, based on the 16-monomer repeat length typical of natural D17Z1 arrays, in which the consensus CENP-B box elements are either completely absent (0/16 monomers) or increased in density (16/16 monomers) compared to D17Z1 alpha-satellite (5/16 monomers). Using these vectors, we show that the presence of CENP-B box elements is a requirement for efficient de novo centromere formation and that increasing the density of CENP-B box elements may enhance the efficiency of de novo centromere formation. Furthermore, we have developed a novel, high-throughput methodology that permits the rapid conversion of any genomic BAC target into a HAC vector by transposon-mediated modification with synthetic alpha-satellite arrays and other key functional units. Taken together, these approaches offer the potential to significantly advance the utility of BAC-based HACs for functional annotation of the genome and for applications in gene transfer.  相似文献   

8.
CENP-B controls centromere formation depending on the chromatin context   总被引:4,自引:0,他引:4  
Okada T  Ohzeki J  Nakano M  Yoda K  Brinkley WR  Larionov V  Masumoto H 《Cell》2007,131(7):1287-1300
The centromere is a chromatin region that serves as the spindle attachment point and directs accurate inheritance of eukaryotic chromosomes during cell divisions. However, the mechanism by which the centromere assembles and stabilizes at a specific genomic region is not clear. The de novo formation of a human/mammalian artificial chromosome (HAC/MAC) with a functional centromere assembly requires the presence of alpha-satellite DNA containing binding motifs for the centromeric CENP-B protein. We demonstrate here that de novo centromere assembly on HAC/MAC is dependent on CENP-B. In contrast, centromere formation is suppressed in cells expressing CENP-B when alpha-satellite DNA was integrated into a chromosomal site. Remarkably, on those integration sites CENP-B enhances histone H3-K9 trimethylation and DNA methylation, thereby stimulating heterochromatin formation. Thus, we propose that CENP-B plays a dual role in centromere formation, ensuring de novo formation on DNA lacking a functional centromere but preventing the formation of excess centromeres on chromosomes.  相似文献   

9.
We purified 15,000-fold from HeLa cell nuclear extract the centromere antigen that reacts specifically with the 17-bp sequence, designated previously as CENP-B box, in human centromeric alpha-satellite (alphoid) DNA by a two-step procedure including an oligonucleotide affinity column. The purified protein was identified as the centromere protein B (CENP-B) by its mobility on SDS-PAGE (80 kD), and reactivities to a monoclonal antibody raised to CENP-B (bacterial fusion protein) and to anticentromere sera from patients with autoimmune diseases. Direct binding by CENP-B of the CENP-B box sequence in the alphoid DNA has been proved using the purified CENP-B by DNA mobility-shift assay, Southwestern blotting, and DNase I protection analysis. The binding constant of the antigen to the CENP-B box sequence is 6 x 10(8) M-1. DNA mobility-shift assays indicated that the major complex formed between the CENP-B and the DNA contains two DNA molecules, suggesting the importance of the CENP-B/CENP-B box interaction in organization of higher ordered chromatin structures in the centromere and/or kinetochore. Location of DNA binding and dimerization domains in CENP-B was discussed based on the DNA mobility-shift assays performed with a protein fraction containing intact and partial cleavage products of CENP-B.  相似文献   

10.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

11.
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.  相似文献   

12.
We report the interaction between a human centromere antigen and an alphoid DNA, a human centromeric satellite DNA, which consists of 170-bp repeating units. A cloned alphoid DNA fragment incubated with a HeLa cell nuclear extract is selectively immunoprecipitated by the anticentromere sera from scleroderma patients. Immunoprecipitation of the DNA made by primer extension defines the 17-bp segment on the alphoid DNA that is required for formation of DNA-antigen complex. On the other hand, when proteins bound to the biotinylated alphoid DNA carrying the 17-bp motif are recovered by streptavidin agarose and immunoblotted, the 80-kD centromere antigen (CENP-B) is detected. DNA binding experiments for proteins immunoprecipitated with anticentromere serum, separated by gel electrophoresis, and transferred to a membrane strongly suggest that the 80-kD antigen specifically binds to the DNA fragment with the 17-bp motif. The 17-bp motif is termed the "CENP-B box." Alphoid monomers with the CENP-B box are found in all the known alphoid subclasses, with varying frequencies, except the one derived from the Y chromosome so far cloned. These results imply that the interaction of the 80-kD centromere antigen with the CENP-B box in the alphoid repeats may play some crucial role in the formation of specified structure and/or function of human centromere.  相似文献   

13.
We have combined in vivo and in vitro approaches to investigate the function of CENP-B, a major protein of human centromeric heterochromatin. Expression of epitope-tagged deletion derivatives of CENP-B in HeLa cells revealed that a single domain less than 158 residues from the amino terminus of the protein is sufficient to localize CENP-B to centromeres. Centromere localization was abolished if as few as 28 amino acids were removed from the amino terminus of CENP-B. The centromere localization signal of CENP-B can function in an autonomous fashion, relocating a fused bacterial enzyme to centromeres. The centromere localization domain of CENP-B specifically binds in vitro to a subset of alpha-satellite DNA monomers. These results suggest that the primary mechanism for localization of CENP-B to centromeres involves the recognition of a DNA sequence found at centromeres. Analysis of the distribution of this sequence in alpha-satellite DNA suggests that CENP-B binding may have profound effects on chromatin structure at centromeres.  相似文献   

14.
Regulation of DNA replication and copy number is necessary to promote genome stability and maintain cell and tissue function. DNA replication is regulated temporally in a process known as replication timing (RT). Rap1-interacting factor 1 (Rif1) is a key regulator of RT and has a critical function in copy number control in polyploid cells. Previously, we demonstrated that Rif1 functions with SUUR to inhibit replication fork progression and promote underreplication (UR) of specific genomic regions. How Rif1-dependent control of RT factors into its ability to promote UR is unknown. By applying a computational approach to measure RT in Drosophila polyploid cells, we show that SUUR and Rif1 have differential roles in controlling UR and RT. Our findings reveal that Rif1 acts to promote late replication, which is necessary for SUUR-dependent underreplication. Our work provides new insight into the process of UR and its links to RT.  相似文献   

15.
16.
Efficiency of de novo centromere formation in human artificial chromosomes   总被引:5,自引:0,他引:5  
In a comparative study, we show that human artificial chromosome (HAC) vectors based on alpha-satellite (alphoid) DNA from chromosome 17 but not the Y chromosome regularly form HACs in HT1080 human cells. We constructed four structurally similar HAC vectors, two with chromosome 17 or Y alphoid DNA (17alpha, Yalpha) and two with 17alpha or Yalpha and the hypoxanthine guanine phosphoribosyltransferase locus (HPRT1). The 17alpha HAC vectors generated artificial minichromosomes in 32-79% of the HT1080 clones screened, compared with only approximately 4% for the Yalpha HAC vectors, indicating that Yalpha is inefficient at forming a de novo centromere. The 17alpha HAC vectors produced megabase-sized, circular HACs containing multiple copies of alphoid fragments (60-250 kb) interspersed with either vector or HPRT1 DNA.The 17alpha-HPRT1 HACs were less stable than those with 17alpha only, and these results may influence the design of new HAC gene transfer vectors.  相似文献   

17.
Alpha-satellite DNA of primates: old and new families   总被引:10,自引:0,他引:10  
In this report we review alpha-satellite DNA (AS) sequence data to support the following proposed scenario of AS evolution. Centromeric regions of lower primate chromosomes have solely "old" AS based on type A monomeric units. Type A AS is efficiently homogenized throughout the whole genome and is nearly identical in all chromosomes. In the ancestors of great apes, a divergent variant of the type A monomer acquired the ability to bind CENP-B protein and expanded in the old arrays, mixing irregularly with type A. As a result, a new class of monomers, called type B, was formed. The "new" AS families were established by amplification of divergent segments of irregular A-B arrays and spread to many chromosomes before the human-chimpanzee-gorilla split. The new arrays contain regularly alternating monomers of types A and B. New AS is homogenized within an array with little or no homogenization between chromosomes. Most human chromosomes contain only one new array and one or a few old arrays. However, as a rule only new arrays are efficiently homogenized. Apparently, in evolution, after the establishment of the new arrays homogenization in the old arrays stopped. Notably, kinetochore structures marking functional centromeres are also usually formed on the new arrays. We propose that homogenization of AS may be limited to arrays participating in centromeric function.  相似文献   

18.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.  相似文献   

19.
Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20–25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name “alpha satellite insertion.” It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.  相似文献   

20.
Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, expression, biochemical properties, and centromeric localization of its CENP-B. The amino acid sequence deduced from the cloned AGM CENP-B gene was established to be highly homologous to that of human and mouse CENP-B. In particular, the DNA binding and homodimer formation domains demonstrated 100% identity to their human and mouse counterparts. Immunoblotting and DNA mobility shift analyses revealed CENP-B to be expressed in AGM cell lines. As predicted from the gene structure, the AGM CENP-B in the cell extracts exhibited the same DNA binding specificity and homodimer forming activity as human CENP-B. By indirect immunofluorescent staining of AGM mitotic cells with anti-CENP-B antibodies, a centromere-specific localization of AGM CENP-B could be demonstrated. We also isolated AGM alpha-satellite DNA with a CENP-B box-like sequence with CENP-B affinity. These results not only prove that CENP-B functionally persists in AGM cells but also suggest that the AGM genome contains the recognition sequences for CENP-B (CENP-B boxes with the core recognition sequence or CENP-B box variants) in centromeric satellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号