首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In animal systems, indomethacin inhibits cAMP production via a prostaglandin-adenylyl cyclase pathway. To examine the possibility that a similar mechanism occurs in plants, the effect of indomethacin on the cell cycle of a tobacco bright yellow 2 (TBY-2) cell suspension was studied. Application of indomethacin during mitosis did not interfere with the M/G1 progression in synchronized BY-2 cells but it inhibited cAMP production at the beginning of the G1 phase and arrested the cell cycle progression at G1/S. These observations are discussed in relation to the putative involvement of cAMP biosynthesis in the cell cycle progression in TBY-2 cells.  相似文献   

2.
3.
4.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

5.
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku heterodimer together form the biologically critical DNA-PK complex that plays key roles in the repair of ionizing radiation-induced DNA double-strand breaks through the non-homologous end-joining (NHEJ) pathway. Despite elegant and informative electron microscopy studies, the mechanism by which DNA-PK co-ordinates the initiation of NHEJ has been enigmatic due to limited structural information. Here, we discuss how the recently described small angle X-ray scattering structures of full-length Ku heterodimer and DNA-PKcs in solution, combined with a breakthrough DNA-PKcs crystal structure, provide significant insights into the early stages of NHEJ. Dynamic structural changes associated with a functionally important cluster of autophosphorylation sites play a significant role in regulating the dissociation of DNA-PKcs from Ku and DNA. These new structural insights have implications for understanding the formation and control of the DNA-PK synaptic complex, DNA-PKcs activation and initiation of NHEJ. More generally, they provide prototypic information for the phosphatidylinositol-3 kinase-like (PIKK) family of serine/threonine protein kinases that includes Ataxia Telangiectasia-Mutated (ATM) and ATM-, Rad3-related (ATR) as well as DNA-PKcs.  相似文献   

6.
Two thioredoxin genes from the yeast Saccharomyces cerevisiae were cloned using synthetic oligonucleotide probes. The DNA sequences of the two genes were found to be 74% identical. The two genes, designated TRX1 and TRX2, were mutagenized in vitro and used to construct a set of thioredoxin deletion mutants. The loss of either thioredoxin gene alone has no effect on cell growth or morphology. However, the simultaneous deletion of both thioredoxin genes profoundly affects the cell cycle. S phase is 3-fold longer, and G1 is virtually absent. In addition, the thioredoxin double mutant shows a 33% increase in generation time, a significant increase in cell size, and a greater proportion of large budded cells. The results suggest that in the absence of TRX1 and TRX2, a slow rate of DNA replication inhibits the normal progress of cellular reproduction. Surprisingly, the loss of both thioredoxins also leads to methionine auxotrophy. Thus yeast glutaredoxin is unable to substitute for thioredoxin in sulfate assimilation. As a first step in studying the cell cycle control mechanisms that respond to the thioredoxin deficiency, it was shown that cell viability does not require the function of RAD9, a known cell cycle checkpoint.  相似文献   

7.
The phagocytic capacity of macrophages in the S phase of the cell cycle   总被引:1,自引:0,他引:1  
An inflammatory reaction was induced in the peritoneal cavity of mice. Two days later, the peritoneal macrophages, containing a proportion of S-phase (DNA-synthesizing) cells, were harvested and adhered to glass. Then the S-phase macrophages were labeled with [3H]thymidine (radioautography) and the macrophage monolayers were tested with regard to their ability to phagocytose immunoglobulincoated sheep red blood cells (SRBC). The percentages of S-phase macrophages which had phagocytosed SRBC were a little lower than those found for G-phase (G1 + G2) cells. Otherwise, the number of phagocytosed SRBC per macrophage was about equal for macrophages in both phases, and they both responded well by increasing the phagocytosis when the SRBC: macrophage ratio was increased. The S-phase macrophages also phagocytosed latex beads and zymosan particles efficiently.  相似文献   

8.
Double minutes (dm) characteristically exhibit greater numerical heterogeneity among tumor cells than do chromosomes. The biological basis of this heterogeneity was studied in human carcinoma cell line S 18. Pulse labeling of asynchronous cells with [3H]dThd, continuous labeling of synchronized cells with BrdUrd and prematurely condensed chromosome (PCC) studies of G1 and G2 phase S 18 cells indicate that dm-DNA replicates only once during S phase of the cell cycle. No evidence was found for replication of dm-DNA at G1 phase, G2 phase or mitotis. Cells observed at anaphase show imprecise distribution of dm to daughter cells. These studies suggest numerical heterogeneity of dm results from anomalous mitotic segregation rather than anomalous replication of dmDNA.  相似文献   

9.
Lee HH  Lee SJ  Kim S  Jeong S  Na M  Lee DM  Cheon YP  Lee KH  Choi I  Chun T 《Biotechnology letters》2012,34(7):1225-1233
Since T cells express diverse sex steroid hormone receptors, they might be a good model to evaluate the effects of sex steroid hormones on immune modulation. Porcine testicular extract contains several sex steroid hormones and may be useful to study the effects of sex steroid hormones during T cell activation. We have examined the effects of the porcine testicular extract on T cell activation: proliferation and secretion of cytokines (IL-2 and IFN-γ) by activated T cells were severely decreased after treatment with porcine testicular extract. The extract produced an immunosuppressive effect and inhibited the proliferation of activated T cells by blocking the cell cycle transition from the G(1) phase to S phase. These effects were mediated by a decrease in the expression of cyclin D1 and cyclin E and constitutive expression of p27(KIP1) after T cell activation.  相似文献   

10.
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.  相似文献   

11.
BACH1 (also known as FANCJ and BRIP1) is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1. Previous biochemical and functional analyses have suggested a role for the BACH1 homolog in Caenorhabditis elegans during DNA replication. Here, we report the association of BACH1 with a distinct BRCA1/BRCA2-containing complex during the S phase of the cell cycle. Depletion of BACH1 or BRCA1 using small interfering RNAs results in delayed entry into the S phase of the cell cycle. Such timely progression through S phase requires the helicase activity of BACH1. Importantly, cells expressing a dominant negative mutation in BACH1 that results in a defective helicase displayed increased activation of DNA damage checkpoints and genomic instability. BACH1 helicase is silenced during the G(1) phase of the cell cycle and is activated through a dephosphorylation event as cells enter S phase. These results point to a critical role for BACH1 helicase activity not only in the timely progression through the S phase but also in maintaining genomic stability.  相似文献   

12.
Comment on: Li A, et al. Nat Cell Biol 2011; 13:402-11.  相似文献   

13.
14.
Varma AK  Brown RS  Birrane G  Ladias JA 《Biochemistry》2005,44(33):10941-10946
The breast and ovarian tumor suppressor BRCA1 has important functions in cell cycle checkpoint control and DNA repair. Two tandem BRCA1 C-terminal (BRCT) domains are essential for the tumor suppression activity of BRCA1 and interact in a phosphorylation-dependent manner with proteins involved in DNA damage-induced checkpoint control, including the DNA helicase BACH1 and the CtBP-interacting protein (CtIP). The crystal structure of the BRCA1 BRCT repeats bound to the PTRVSpSPVFGAT phosphopeptide corresponding to residues 322-333 of human CtIP was determined at 2.5 A resolution. The peptide binds to a cleft formed by the interface of the two BRCTs in a two-pronged manner, with phospho-Ser327 and Phe330 anchoring the peptide through extensive contacts with BRCA1 residues. Several hydrogen bonds and salt bridges that stabilize the BRCA1-BACH1 complex are missing in the BRCA1-CtIP interaction, offering a structural basis for the approximately 5-fold lower affinity of BRCA1 for CtIP compared to that of BACH1, as determined by isothermal titration calorimetry. Importantly, the side chain of Arg1775 in the cancer-associated BRCA1 mutation M1775R sterically clashes with the phenyl ring of CtIP Phe330, disrupting the BRCA1-CtIP interaction. These results provide new insights into the molecular mechanisms underlying the dynamic selection of target proteins involved in DNA repair and cell cycle control by BRCA1 and reveal how certain cancer-associated mutations affect these interactions.  相似文献   

15.
Overexpression of protein kinase C delta (PKCdelta) stimulates apoptosis in a wide variety of cell types through a mechanism that is incompletely understood. PKCdelta-deficient cells are impaired in their response to DNA damage-induced apoptosis, suggesting that PKCdelta is required to mount an appropriate apoptotic response under conditions of stress. The mechanism through which it does so remains elusive. In addition to effects on cell survival, PKCdelta elicits pleiotropic effects on cellular proliferation. We now provide the first evidence that the ability of PKCdelta to stimulate apoptosis is intimately linked to its ability to stimulate G(1) phase cell cycle progression. Using an adenoviral-based expression system to express PKCalpha,-delta, and -epsilon in epithelial cells, we demonstrate that a modest increase in PKCdelta activity selectively stimulates quiescent cells to initiate G(1) phase cell cycle progression. Rather than completing the cell cycle, PKCdelta-infected cells arrest in S phase, an event that triggers caspase-dependent apoptotic cell death. Apoptosis was preceded by the activation of cell cycle checkpoints, culminating in the phosphorylation of Chk-1 and p53. Strikingly, blockade of S phase entry using the phosphatidylinositol 3-kinase inhibitor LY294002 prevented checkpoint activation and apoptosis. In contrast, inhibitors of mitogen-activated protein kinase cascades failed to prevent apoptosis. These findings demonstrate that the biological effects of PKCdelta can be extended to include positive regulation of G(1) phase cell cycle progression. Importantly, they reveal the existence of a novel, cell cycle-dependent mechanism through which PKCdelta stimulates cell death.  相似文献   

16.
Regulation of the G1 phase of the mammalian cell cycle   总被引:24,自引:0,他引:24  
In any multi-cellular organism,the balance between cell division and cell death maintains a constant cell number.Both cell division cycle and cell death are highly regulated events.Whether the cell will proceed through the cycle or not,depends upon whether the conditions required at the checkpoints during the cycle and fulfilled.In higher eucaryotic cells,such as mammalian cells,signals that arrest the cycle usually act at a G1 checkpoint.Cells that pass this restriction point are committed to complete the cycle.Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family,cyclin dependent kinases,cyclins,and cyclin kinase inhibitors.  相似文献   

17.
The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.  相似文献   

18.
19.
To determine changes in distribution or mobility of cell-surface glycoconjugates during myogenesis the binding of fluorescein-conjugated plant lectins to myoblasts and myotubes of the L6 rat skeletal muscle cell line has been studied. Binding has been carried out at 4 degrees C on either live or glutaraldehyde-fixed cells. Fluorescein conjugates of soybean agglutinin (Fl-SBA), wheat germ agglutinin (Fl-WGA), concanavalin A (Fl-conA) and Lens culinaris agglutinin (Fl-LCA) produced predominantly uniform fluorescence on both live and fixed myoblasts. On fixed myotubes, Fl-LCA, Fl-conA and Fl-SBA again produced predominantly uniform fluorescence, whereas Fl-WGA showed a pattern of diffuse, irregular spots in addition to uniform fluorescence. Fl-conA, Fl-LCA and Fl-WGA binding to live myotubes resulted in patterns quite similar to those on fixed myotubes; the only differences being the presence of weak patterns of diffuse spots with Fl-LCA and Fl-conA and an enhanced pattern of diffuse spots with Fl-WGA. Fl-SBA, however, showed a unique pattern on live myotubes which consisted of discrete, round spots and minimal uniform fluorescence. With shorter labeling times, Fl-SBA produced relatively more prominent uniform fluorescence on live myotubes. It appears, therefore, that the native distribution of SBA, conA and LCA-binding sites is similar and predominantly random on L6 myoblasts and myotubes, whereas some WGA-binding sites may be aggregated on myotubes. The results also suggest that SBA-binding sites readily cluster at 4 degrees C on myotubes but not myoblasts, whereas the other lectin sites undergo little or no redistribution on either cell type. Thus the mobility of SBA-binding sites may increase with differentiation.  相似文献   

20.
Resting cells and the G1 phase of the cell cycle   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号