首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epitope sequences within the hemagglutinin (HA) of influenza A virus H3N2 at amino acid residues 173-181 and 227-239 that forms anti-parallel β-sheet structure are similarly recognized by human monoclonal antibodies (HuMAbs), B-1 and D-1 that we recently obtained using the peripheral blood lymphocytes from two influenza-vaccinated volunteers. Both HuMAbs showed strong global neutralization of H3N2 strains. Here we show the significant conservation of the β-sheet region consisting of the above-mentioned two epitope regions in H3N2. In addition, we also identified the corresponding regions with similar structure in other subtypes such as H1N1 and H5N1. These two regions are similarly located underneath the receptor-binding sites of individual subtypes. Analysis of those regions using sequences available from the Influenza Virus Resource at the National Center for Biotechnology Information revealed that compared with those in the known neutralizing epitopes A-E, those sequences were fairly conserved in human H3N2 (n = 7955), swine H1N1 (n = 360) and swine H3N2 (n = 235); and highly conserved in human H1N1 (n = 2722), swine-origin pandemic H1N1 (n = 1474), human H5N1 (n = 319) and avian H5N1 (n = 2349). Phylogenetic tree for these regions formed clearly separable clusters for H1N1, H3N2 and H5N1, irrespective of different host origin. These data may suggest a possible significance of those regions for development of alternative vaccine that could induce neutralizing antibodies reactive against wide-range of influenza virus strains.  相似文献   

2.
NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+   总被引:2,自引:0,他引:2  
The structure of thrombin-binding DNA aptamer complexed with a single Sr2+ ion (Sr2+:TBA complex) has been determined using NMR spectroscopy and restrained molecular dynamics simulations. The quadruplex structure for the Sr2+:TBA complex is similar in topology, but distinct in structure, from that previously reported for the K+:TBA complex. The inter-tetrad distance of the Sr2+:TBA complex is 3.8 angstroms, or 0.7 angstroms larger than in the K+:TBA complex. This substantial difference can be attributed to a different binding site for Sr2+ in the Sr2+:TBA complex than for K+ in the K+:TBA complex. The Sr2+:TBA complex assumes a 1:1 stoichiometry, and it is very likely that the Sr2+ ion simultaneously interacts with the eight O6 atoms of the two G-tetrads. The results indicate that quadruplex DNA structures are highly sensitive to the presence of specific metal ions. The binding of specific metal ions may modulate the biological activity of quadruplex DNA structures in vivo.  相似文献   

3.
4.
The thrombin-binding DNA aptamer (TBA) 5′-d(GGTTGGTGTGGTTGG)-3′ forms a G-quadruplex that is necessary for binding to the coagulation factor thrombin. The stability of the G-quadruplex of TBA when bound to thrombin and potassium ion (K+) were investigated for the wild-type oligonucleotide and for mutants in which thymine residues were substituted by adenine. In the presence of thrombin, G-quadruplexes formed by oligonucleotides in which the fourth or thirteenth residues were changed (T4A and T13A, respectively) were more unstable than that of wild-type, whereas T3A, T7A, T9A and T12A were more stable. The opposite effect was observed in the presence of 100 mM K+: the G-quadruplexes formed by T4A and T13A were more stable and T3A, T7A, T9A and T12A were more unstable than that of wild-type. Isothermal titration calorimetry measurements indicated that the binding constant of the interaction between T3A, T7A, T9A and T12A mutants and thrombin at 25 °C were close to that of wild-type, whereas T13A was significantly lower and T4A did not appear to bind to thrombin. Therefore, the stabilization of the G-quadruplex structure of TBA by thrombin appears to be due to an interaction between certain thymine nucleobases rather than to the quadruplex structure. The present study demonstrates that thrombin stabilizes the G-quadruplex via the interaction with residues in the loops but not via direct stabilization of G-quartets.  相似文献   

5.
Formation of intramolecular tetraplex structures by the thrombin-binding DNA aptamer (TBA) in the presence of K(+), Pb(2+), Ba(2+), Sr(2+) and Mn(2+) has been studied by vibrational spectroscopy. All tetraplex structures contain G-G Hoogsteen type base pairing, both C2'endo/anti and C2'endo/syn deoxyguanosine glycosidic conformations and local B like form DNA phosphate geometries. Addition of Pb(2+) ions modifies the structure by interacting at the level of the guanine carbonyl groups. The very important downshift of the guanine C6=O6 carbonyl vibration mode in the TBA spectrum induced by the addition of one Pb(2+) ion per TBA molecule is in agreement with a localization of the metal ion between both guanine quartets. FTIR melting experiments show an important stabilization of the tetraplex structure upon addition of Pb(2+) ions (DeltaT = 15 degrees C). This strong interaction of lead cations may be correlated with a change in the geometry of the cage formed by the two guanine quartets. A similar but weaker effect is observed for barium and strontium cations.  相似文献   

6.
Thrombin is a major component of blood clotting and involved in the formation of a fibrin clot. One of the precursors during thrombin maturation is prethrombin-2, with the presence of Arg363-Ile364 bond between the light and heavy chain of protein, the only distinction from thrombin. Prethrombin-2 is able to interact with less efficiency with a 15-mer thrombin-binding aptamer (TBA). We investigate the interaction of both known conformers of TBA with thrombin and prethrombin-2 by simulation of molecular dynamics. It was shown that TBA could interact with thrombin in both conformations with similar efficiency, although a stable complex of prethrombin-2 with TBA was found only in conformation identical with the aptamer structure, pdb 1HAO. Analysis of molecular dynamics of complexes offered an assumption that the motion of the exosite-1 forming loop Lys428-Ile438 determined the difference in affinity of the complexes of TBA with thrombin and prethrombin-2.  相似文献   

7.
In this report, structural characterization, aptamer stability and thrombin of a new modified thrombin-ligand complex binding aptamer (TBA) containing anti-guanine bases and a loop position locked nucleic acid (LNA) are presented. NMR, circular dichroic spectroscopy and molecular modeling were used to characterize the three-dimensional structure of two G-quadruplexes. LNA-modification of the anti-guanosines yields G-quadruplexes that show affinity and inhibitory activity toward thrombin, whereas LNA-modification of a thymine nucleotide in the TGT loop increases the thermal stability of TBA. As assessed by denatured PAGE electrophoresis, all modified aptamers display an increase in environmental stability. The prothrombin time assay and fibrinogen assay showed that the aptamers still had good inhibitory activity, and 15 of them had the longest PT time. Therefore, the LNA modification is well suited to improve the physicochemical and biological properties of the native thrombin-binding aptamer.  相似文献   

8.
Guanine-rich DNA sequences tend to form four-stranded G-quadruplex structures. Characteristic glycosidic conformational patterns along the G-strands, such as the 5'-syn-anti-syn-anti pattern observed with the Oxytricha nova telomeric G-quadruplexes, have been well documented. However, an explanation for these featured glycosidic patterns has not emerged. This work presents MD simulation and free energetic analyses for simplified two-quartet [d(GG)](4) models and suggests that the four base pair step patterns show quite different relative stabilities: syn-anti > anti-anti > anti-syn > syn-syn. This suggests the following rule: when folding, anti-parallel G-quadruplexes tend to maximize the number of syn-anti steps and avoid the unfavorable anti-syn and syn-syn steps. This rule is consistent with most of the anti-parallel G-quadruplex structures in the Protein Databank (PDB). Structural polymorphisms of G-quadruplexes relate to these glycosidic conformational patterns and the lengths of the G-tracts. The folding topologies of G2- and G4-tracts are not very polymorphic because each strand tends to populate the stable syn-anti repeat. G3-tracts, on the other hand, cannot present this repeating pattern on each G-tract. This leads to smaller energy differences between different geometries and helps explain the extreme structural polymorphism of the human telomeric G-quadruplexes.  相似文献   

9.
10.
The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+) ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin-TBA complex formed in the presence of Na(+) or K(+) and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na(+) and K(+) on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein-aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement.  相似文献   

11.
Koizumi M  Breaker RR 《Biochemistry》2000,39(30):8983-8992
Two classes of RNA aptamers that bind the second messenger adenosine 3',5'-cyclic monophosphate (cAMP; 1) were isolated from a random-sequence pool using in vitro selection. Class I and class II aptamers are formed by 33- and 31-nucleotide RNAs, respectively, and each is comprised of similar stem-loop and single-stranded structural elements. Class II aptamers, which dominate the final selected RNA population, require divalent cations for complex formation and display a dissociation constant (K(D)) for cAMP of approximately 10 microM. A representative class II aptamer exhibits substantial discrimination against 5'- and 3'-phosphorylated nucleosides such as ATP, 5'-AMP, and 3'-AMP. However, components of cAMP such as adenine and adenosine also are bound, indicating that the adenine moiety is the primary positive determinant of ligand binding. Specificity of cAMP binding appears to be established by hydrogen bonding interactions with the adenine base as well as by steric interactions with groups on the ribose moiety. In addition, the aptamer recognizes 8,5'-O-cycloadenosine (2) but not N(3), 5'-cycloadenosine (3), indicating that this RNA might selectively recognize the anti conformation of the N-glycosidic bond of cAMP.  相似文献   

12.
It is noteworthy that the formation of the DNA G-quadruplex is induced by factors other than stabilizing cations because this event probably occurs in living cells. Previous studies have shown that thrombin-binding DNA aptamer (TBA) forms a chair-type intramolecular G-quadruplex structure that binds with thrombin protein in the absence of stabilizing cations. Here, we used circular dichroism (CD) spectroscopy to confirm G-quadruplex formation in the presence of thrombin without stabilizing cations. We obtained characteristic CD spectra that demonstrated that TBA forms the distinctive G-quadruplex structure. Additionally, we investigated G-quadruplex formation induced by change of solvent environment: the influence of low-temperature conditions and molecular crowding.  相似文献   

13.
A number of thrombin-binding DNA aptamers have been developed during recent years. So far the structure of just a single one, 15-mer thrombin-binding aptamer (15TBA), has been solved as G-quadruplex. Structures of others, showing variable anticoagulation activities, are still not known yet. In this paper, we applied the circular dichroism and UV spectroscopy to characterize the temperature unfolding and conformational features of 31-mer thrombin-binding aptamer (31TBA), whose sequence has a potential to form G-quadruplex and duplex domains. Both structural domains were monitored independently in 31TBA and in several control oligonucleotides unable to form either the duplex region or the G-quadruplex region. The major findings are as follows: (1) both duplex and G-quadruplex domains coexist in intramolecular structure of 31TBA, (2) the formation of duplex domain does not change the fold of G-quadruplex, which is very similar to that of 15TBA, and (3) the whole 31TBA structure disrupts if either of two domains is not formed: the absence of duplex structure in 31TBA abolishes G-quadruplex, and vice versa, the lack of G-quadruplex folding results in disallowing the duplex domain.  相似文献   

14.
A number of thrombin-binding DNA aptamers have been developed during recent years. So far the structure of just a single one, 15-mer thrombin-binding aptamer (15TBA), has been solved as G-quadruplex. Structures of others, showing variable anticoagulation activities, are still not known yet. In this paper, we applied the circular dichroism and UV spectroscopy to characterize the temperature unfolding and conformational features of 31-mer thrombin-binding aptamer (31TBA), whose sequence has a potential to form G-quadruplex and duplex domains. Both structural domains were monitored independently in 31TBA and in several control oligonucleotides unable to form either the duplex region or the G-quadruplex region. The major findings are as follows: (1) both duplex and G-quadruplex domains coexist in intramolecular structure of 31TBA, (2) the formation of duplex domain does not change the fold of G-quadruplex, which is very similar to that of 15TBA, and (3) the whole 31TBA structure disrupts if either of two domains is not formed: the absence of duplex structure in 31TBA abolishes G-quadruplex, and vice versa, the lack of G-quadruplex folding results in disallowing the duplex domain.  相似文献   

15.
Modified thrombin-binding aptamers (TBAs) carrying uridine (U), 2'-deoxy-2'-fluorouridine (FU) and North-methanocarbathymidine (NT) residues in the loop regions were synthesized and analyzed by UV thermal denaturation experiments and CD spectroscopy. The replacement of thymidines in the TGT loop by U and FU results in an increased stability of the antiparallel quadruplex structure described for the TBA while the presence of NT residues in the same positions destabilizes the antiparallel structure. The substitution of the thymidines in the TT loops for U, FU and NT induce a destabilization of the antiparallel quadruplex, indicating the crucial role of these positions. NMR studies on TBAs modified with uridines at the TGT loop also confirm the presence of the antiparallel quadruplex structure. Nevertheless, replacement of two Ts in the TT loops by uridine gives a more complex scenario in which the antiparallel quadruplex structure is present along with other partially unfolded species or aggregates.  相似文献   

16.
Ligands that can interact specifically with telomeric multimeric G-quadruplexes could be developed as promising anticancer drugs with few side effects related to other G-quadruplex-forming regions. In this paper, a new cationic porphyrin derivative, m-TMPipEOPP, was synthesized and characterized. Its multimeric G-quadruplex recognition specificity under molecular crowding conditions was compared to its isomer p-TMPipEOPP. The slight structural difference accounts for different multimeric G-quadruplex recognition specificity for the two isomers. p-TMPipEOPP can barely discriminate between multimeric and monomeric G-quadruplexes. By contrast, m-TMPipEOPP can bind with multimeric but not with monomeric G-quadruplexes. p-TMPipEOPP might bind to multimeric G-quadruplexes by two modes: sandwich-like end-stacking mode and pocket-dependent intercalative mode. Increasing the pocket size between adjacent two G-quadruplex uints is beneficial for the latter mode. m-TMPipEOPP might bind to multimeric G-quadruplexes by a side binding mode, which confers m-TMPipEOPP with higher multimeric G-quadruplex recognition specificity compared to p-TMPipEOPP. m-TMPipEOPP increases the stability of multimeric G-quadruplex under both dilute and molecular crowding conditions but its G-quadruplex-stabilizing ability is a little weaker than p-TMPipEOPP. These results provide important information for the design of highly specific multimeric G-quadruplex ligands. Another interesting finding is that pocket size is an important factor in determining the stability of multimeric G-quadruplexes.  相似文献   

17.
Hydrogen exchange rates of the imino protons of the thrombin-binding 15 mer DNA aptamer d(G(1)G(2)T(3)T(4)G(5)G(6)T(7)G(8)T(9)G(10)G(11)T(12)T(13)G(14)G(15)) in the presence of Sr(2+) were measured. In the temperature range 15-35 degrees C, the exchange rates of the eight iminos in the quadruplex core were not uniform, with the G(2), G(11) and G(15) iminos exchanging faster, the G(1), G(5), G(10) and G(14) iminos exchanging slower, and the G(6) imino exchanging at a medium rate. In the quadruplex G(1), G(5), G(10) and G(14) adopted syn glycosidic conformation, while G(2), G(6), G(11) and G(15) adopted anti-conformation. It was found that the four slowly exchanging iminos, which were all the syn-iminos, happened to be located in the TT loops that were not easy to open to the solvent. The anti-iminos exchanged faster, but the G(6) imino exchanged slower than other anti-iminos, because its hydrogen bond with the G(10)O6 was stabilized by the TGT loop. The fact that the G(6) imino exchanged at a faster rate than those syn-iminos in the TT loops suggested that the TGT loop was less stable than the TT loops. Unfolding mechanism for the quadruplex was thus proposed: The quadruplex first uncoupled the three base pairs: G(1)-G(15), G(2)-G(14) and G(5)-G(11), which were not protected by any loops. Then it opened the TGT loop. Finally, it opened the TT loops and the sequence became an unstructured random coil that exchanged with the quadruplex conformation. The conformational exchange between the quadruplex and random coil had been detected.  相似文献   

18.
The photoisomerization and DNA interaction studies of three arylstilbazolium derivatives with various samples of nucleic acids (duplexes, triplexes and tetraplexes) are reported. The equilibrium dialysis study revealed high binding affinities of ligands to tetraplex structures. The quadruplex-binding affinity could be switched by light, e.g., the E,E and E,Z isomers of 1,4-bis(vinylquinolinium)benzene (1) interacted with parallel and antiparallel tetraplexes exhibiting different binding selectivity. The E,Z-1 showed higher binding preference for c-myc DNA (a propeller-type quadruplex), whereas the E,E-1 favorably interacted with telomeric DNA (a basket-type quadruplex). The presence of quadruplex DNA hampered photoisomerization of quadruplex-bound ligand.  相似文献   

19.
Flavin recognition by an RNA aptamer targeted toward FAD   总被引:2,自引:0,他引:2  
Flavin adenine dinucleotide (FAD) is one of the primary cofactors in biological redox reactions. Designing cofactor-dependent redox ribozymes could benefit from studies of new RNA-cofactor complexes, as would our understanding of ribozyme evolution during an RNA World. We have therefore used the SELEX method to identify RNA aptamers that recognize FAD. Functional analysis of mutant aptamers, S1 nuclease probing, and comparative sequence analysis identified a simple, 45 nt helical structure with several internal bulges as the core-binding element. These aptamers recognize with high specificity the isoalloxazine nucleus of FAD but do not distinguish FAD from FADH(2), nor are they removed from an FAD resin with UMP (which shares a pattern of hydrogen bond donors and acceptors along one face). Thus, these aptamers are structurally and functionally distinct from previously identified FMN and riboflavin aptamers. Circular dichroism data suggest a conformational change in the RNA upon FAD binding. These aptamers require magnesium and are active across a wide pH range (4.5-8.9). Since general acid-base catalysis plays a role in some flavin-dependent redox reaction mechanisms, these aptamers may be particularly well-suited to the design of new redox ribozymes.  相似文献   

20.
G-quadruplexes (GQs) are non-canonical DNA structures composed of stacks of stabilized G-tetrads. GQs play an important role in a variety of biological processes and may form at telomeres and oncogene promoters among other genomic locations. Here, we investigate nine variants of telomeric DNA from Tetrahymena thermophila with the repeat (TTGGGG)n. Biophysical data indicate that the sequences fold into stable four-tetrad GQs which adopt multiple conformations according to native PAGE. Excitingly, we solved the crystal structure of two variants, TET25 and TET26. The two variants differ by the presence of a 3′-T yet adopt different GQ conformations. TET25 forms a hybrid [3 + 1] GQ and exhibits a rare 5′-top snapback feature. Consequently, TET25 contains four loops: three lateral (TT, TT, and GTT) and one propeller (TT). TET26 folds into a parallel GQ with three TT propeller loops. To the best of our knowledge, TET25 and TET26 are the first reported hybrid and parallel four-tetrad unimolecular GQ structures. The results presented here expand the repertoire of available GQ structures and provide insight into the intricacy and plasticity of the 3D architecture adopted by telomeric repeats from T. thermophila and GQs in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号