首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins.

Methodology/Principal Findings

Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were collected from 53–80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard deviation of intra-pair differences: 10% points vs. 4% points, P<0.001). Increased variation of LINE1 sequence methylation was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences. Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including PPARGC1A in muscle (13.9±6.2% vs. 9.0±4.5%, P = 0.03) and HNF4A in adipose tissue (75.2±3.8% vs. 70.5±3.7%, P<0.001) which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue, respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple testing.

Conclusions/Significance

Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger samples.  相似文献   

2.

Background

Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect.

Methodology/Principal Findings

We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene.

Conclusions

These results provide a proof-of-concept that gene promoter methylation is associated with tumor multiplicity. This underlying epigenetic defect may have noteworthy implications in the prevention of patients with sporadic CRC.  相似文献   

3.
Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. Most cases of HCC are associated with cirrhosis related to chronic hepatitis B virus or hepatitis C virus infections. Hypermethylation of promoter regions is the main epigenetic mechanism of gene silencing and has been involved in HCC development. The aim of this study was to determine whether aberrant methylation of RASSF1A and DOK1 gene promoters is associated with the progression of liver disease in Brazilian patients. Methylation levels were measured by pyrosequencing in 41 (20 HCC, 9 cirrhotic, and 12 non-cirrhotic) liver tissue samples. Mean rates of methylation in RASSF1A and DOK1 were 16.2% and 12.0% in non-cirrhotic, 26.1% and 19.6% in cirrhotic, and 59.1% and 56.0% in HCC tissues, respectively, showing a gradual increase according to the progression of the disease, with significantly higher levels in tumor tissues. In addition, hypermethylation of RASSF1A and DOK1 was found in the vast majority (88%) of the HCC cases. Interestingly, DOK1 methylation levels in HCC samples were significantly higher in the group of younger (<40 years) patients, and higher in moderately differentiated than in poorly differentiated tumors (p < 0.05). Our results reinforce the hypothesis that hypermethylation of RASSF1A and DOK1 contributes to hepatocarcinogenesis and is associated to clinicopathological characteristics. RASSF1A and DOK1 promoter hypermethylation may be a valuable biomarker for early diagnosis of HCC and a potential molecular target for epigenetic-based therapy.  相似文献   

4.
Gastroesophageal junction (GEJ) adenocarcinoma is a lethal cancer with rising incidence, yet the molecular biomarkers that have strong prognostic impact and also hold great therapeutic promise remain elusive. We used a data mining approach and identified the p21 protein-activated kinase 1 (PAK1), an oncogene and drugable protein kinase, to be among the most promising targets for GEJ adenocarcinoma. Immunoblot analysis and data mining demonstrated that PAK1 protein and mRNA were upregulated in cancer tissues compared to the noncancerous tissues. Immunohistochemistry revealed PAK1 overexpression in 72.6% of primary GEJ adenocarcinomas (n = 113). A step-wise increase in PAK1 levels was noted from paired normal epithelium, to atypical hyperplasia and adenocarcinoma. PAK1 overexpression in tumor was associated with lymph node (LN) metastasis (P<0.001), advanced tumor stage (P<0.001), large tumor size (P = 0.006), residual surgical margin (P = 0.033), and unfavorable overall survival (P<0.001). Multivariate analysis showed PAK1 overexpression is an independent high-risk prognostic predictor (P<0.001). Collectively, PAK1 is overexpressed during tumorigenic progression and its upregulation correlates with malignant properties mainly relevant to invasion and metastasis. PAK1 expression could serve as a prognostic predictor that holds therapeutic promise for GEJ adenocarcinoma.  相似文献   

5.
DNA methylation is a critical epigenetic mechanism involved in key cellular processes. Its deregulation has been linked to many human cancers including esophageal squamous cell carcinoma (ESCC). This study was designed to explore the whole methylation status of ESCC and to identify potential plasma biomarkers for early diagnosis. We used Infinium Methylation 450k array to analyze ESCC tissues (n = 4), paired normal surrounding tissues (n = 4) and normal mucosa from healthy individuals (n = 4), and combined these with gene expression data from the GEO database. One hundred and sixty eight genes had differentially methylated CpG sites in their promoter region and a gene expression pattern inverse to the direction of change in DNA methylation. These genes were involved in several cancer-related pathways. Three genes were validated in additional 42 ESCC tissues and paired normal surrounding tissues. The methylation frequency of EPB41L3, GPX3, and COL14A1 were higher in tumor tissues than in normal surrounding tissues (P<0.017). The higher methylation frequency of EPB41l3 was correlated with large tumor size (P = 0.044) and advanced pT tumor stage (P = 0.001). The higher methylation frequency of GPX3 and COL14A1 were correlated with advanced pN tumor stage (P = 0.001 and P<0.001). The methylation of EPB41L3, GPX3, and COL14A1 genes were only found in ESCC patients'' plasma, but not in normal individuals upon testing 42 ESCC patients and 50 healthy individuals. Diagnostic sensitivity was increased when methylation of any of the 3 genes were counted (64.3% sensitivity and 100% specificity). These differentially methylated genes in plasma may be used as biomarkers for early diagnosis of ESCC.  相似文献   

6.
Adrenocortical carcinoma (ACC) is a rare, but highly malignant tumor of unknown origin. Inhibin α-subunit (Inha) knockout mice develop ACCs following gonadectomy. In man, INHA expression varies widely within ACC tissues and its circulating peptide inhibin pro-αC has been described as a novel tumor marker for ACC. We investigated whether genetic and epigenetic changes of the INHA gene in human ACC cause loss or variation of INHA expression. To this end, analyses of INHA sequence, promoter methylation and mRNA expression were performed in human adrenocortical tissues. Serum inhibin pro-αC levels were also measured in ACC patients. INHA genetic analysis in 37 unique ACCs revealed 10 novel, heterozygous rare variants. Of the 3 coding bases affected, one variant was synonymous and two were missense variants: S72F and S184F. The minor allele of rs11893842 at −124 bp was observed at a low frequency (24%) in ACC samples and was associated with decreased INHA mRNA levels: 4.7±1.9 arbitrary units for AA, compared to 26±11 for AG/GG genotypes (P = 0.034). The methylation of four proximal INHA promoter CpGs was aberrantly increased in five ACCs (47.7±3.9%), compared to normal adrenals (18.4±0.6%, P = 0.0052), whereas the other 14 ACCs studied showed diminished promoter methylation (9.8±1.1%, P = 0.020). CpG methylation was inversely correlated to INHA mRNA levels in ACCs (r = −0.701, p = 0.0036), but not associated with serum inhibin pro-αC levels. In conclusion, aberrant methylation and common genetic variation in the INHA promoter occur in human ACCs and are associated with decreased INHA expression.  相似文献   

7.
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2–3, and CXCL14 expression was reduced in metastases vs. primary tumors (P < 0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.  相似文献   

8.

Background

The RAS association domain family protein 1a gene (RASSF1A) is one of the tumor suppressor genes (TSG). Inactivation of RASSF1A is critical to the pathogenesis of cancer. Aberrant TSG methylation was considered an important epigenetic silencing mechanism in the progression of ovarian cancer. A number of studies have discussed association between RASSF1A promoter methylation and ovarian cancer. However, they were mostly based on a small number of samples and showed inconsist results, Therefore, we conducted a meta-analysis to better identify the association.

Methods

Eligible studies were identified by searching the PubMed, EMBASE, Web of Science, and CNKI databases using a systematic searching strategy. We pooled the odds ratio (ORs) from individual studies using a fixed-effects model. We performed heterogeneity and publication bias analysis simultaneously.

Results

Thirteen studies, with 763 ovarian cancer patients and 438 controls were included in the meta-analysis. The frequencies of RASSF1A promoter methylation ranged from 30% to 58% (median is 48%) in the cancer group and 0 to 21% (median is 0) in the control group. The frequencies of RASSF1A promoter methylation in the cancer group were significantly higher than those in the control group. The pooled odds ratio was 11.17 (95% CI = 7.51–16.61) in the cancer group versus the corresponding control group under the fixed-effects model.

Conclusion

The results suggested that RASSF1A promoter methylation had a strong association with ovarian cancer.  相似文献   

9.
We carried out the current meta-analysis aiming to comprehensively assess the potential role of RASSF1A aberrant promoter methylation in the pathogenesis of hepatocellular carcinoma (HCC). A range of electronic databases were searched: Web of Science (1945–2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966–2013), EMBASE (1980–2013), CINAHL (1982–2013) and the Chinese Biomedical Database (CBM) (1982–2013) without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude risk difference (RD) with their 95 % confidence interval (95 % CI) was calculated. In the present meta-analysis, 21 clinical cohort studies with a total of 1,205 HCC patients were included. The results of our meta-analysis illustrated that the frequency of RASSF1A promoter methylation in cancer tissues were significantly higher than those of normal, adjacent and benign tissues (cancer tissues vs. normal tissues: RD = 0.63, 95 % CI 0.53–0.73, P < 0.001; cancer tissues vs. adjacent tissues: RD = 0.43, 95 % CI 0.33–0.53, P < 0.001; cancer tissues vs. benign tissues: RD = 0.48, 95 % CI 038–0.58, P < 0.001; respectively). Further subgroup by ethnicity demonstrated that RASSF1A aberrant promoter methylation was correlated with the pathogenesis of HCC among both Asians and Caucasians (all P < 0.05). The current meta-analysis suggests that RASSF1A aberrant promoter methylation may be implicated in the pathogenesis of HCC. Thus, detection of RASSF1A promoter methylation may be a helpful and valuable biomarker for diagnosis and prognosis of HCC.  相似文献   

10.

Background

The genetic background of Basal Cell Carcinoma (BCC) has been studied extensively, while its epigenetic makeup has received comparatively little attention. Epigenetic alterations such as promoter hypermethylation silence tumor suppressor genes (TSG) in several malignancies.

Objective

We sought to analyze the promoter methylation status of ten putative (tumor suppressor) genes that are associated with Sonic Hedgehog (SHH), WNT signaling and (hair follicle) tumors in a large series of 112 BCC and 124 healthy control samples by methylation-specific PCR.

Results

Gene promoters of SHH (P = 0.016), adenomatous polyposis coli (APC) (P = 0.003), secreted frizzled-related protein 5 (SFRP5) (P = 0.004) and Ras association domain family 1A (RASSF1A) (P = 0.023) showed significantly more methylation in BCC versus normal skin. mRNA levels of these four genes were reduced for APC and SFRP5 in BCC (n = 6) vs normal skin (n = 6). Down regulation of SHH, APC and RASSF1A could be confirmed on protein level as well (P<0.001 for all genes) by immunohistochemical staining. Increased canonical WNT activity was visualized by β-catenin staining, showing nuclear β-catenin in only 28/101 (27.7%) of BCC. Absence of nuclear β-catenin in some samples may be due to high levels of membranous E-cadherin (in 94.1% of the samples).

Conclusions

We provide evidence that promoter hypermethylation of key players within the SHH and WNT pathways is frequent in BCC, consistent with their known constitutive activation in BCC. Epigenetic gene silencing putatively contributes to BCC tumorigenesis, indicating new venues for treatment.  相似文献   

11.

Purpose

Schistosoma haematobium is associated with chronic bladder damage and may subsequently induce bladder cancer in humans, thus posing a serious threat where the parasite is endemic. Here we evaluated aberrant promoter DNA methylation as a potential biomarker to detect severe bladder damage that is associated with schistosomiasis by analyzing urine specimens.

Materials and Methods

A quantitative methylation-specific PCR (QMSP) assay was used to examine the methylation status of seven genes (RASSF1A, RARβ2, RUNX3, TIMP3, MGMT, P16, ARF) in 57 urine samples obtained from volunteers that include infected and uninfected by S. haematobium from an endemic region. The Fishers Exact Test and Logistic Regression analysis were used to evaluate the methylation status with bladder damage (as assessed by ultrasound examination) in subjects with S. haematobium infection.

Results

RASSF1A and TIMP3 were significant to predict severe bladder damage both in univariate (p = 0.015 and 0.023 respectively) and in multivariate (p = 0.022 and 0.032 respectively) logistic regression analysis. Area under the receiver operator characteristic curves (AUC-ROC) for RASSF1A and TIMP3 to predict severe bladder damage were 67.84% and 63.73% respectively. The combined model, which used both RASSF1A and TIMP3 promoter methylation, resulted in significant increase in AUC-ROC compared to that of TIMP3 (77.55% vs. 63.73%.29; p = 0.023).

Conclusions

In this pilot study, we showed that aberrant promoter methylation of RASSF1A and TIMP3 are present in urine sediments of patients with severe bladder damage associated with S. haematobium infection and that may be used to develop non-invasive biomarker of S. haematobium exposure and early molecular risk assessmentof neoplastic transformation.  相似文献   

12.

Purpose

To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis.

Methods

A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated.

Results

The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; P<0.001), tumor differentiation (pooled OR = 2.131, 95% CI: 1.464–3.102; P<0.001), MSI (OR: 27.096, 95% CI: 13.717–53.526; P<0.001). Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; P<0.001) and 9.419 (95% CI: 2.613–33.953; P = 0.001), respectively).

Conclusion

The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation.  相似文献   

13.
The aim of this study was to investigate the relationship between the promoter methylation in five cancer-associated genes and clinicopathologic features for identification of molecular markers of tumor metastatic potential and hormone therapy response efficiency in breast cancer. The methylation levels in paraffin-embedded tumor tissues, plasma, and blood cells from 151 sporadic breast cancer patients and blood samples of 50 controls were evaluated by quantitative multiplex methylation-specific polymerase chain reaction. DNA methylation of RAS-association domain family member 1 (RASSF1A), estrogen receptor 1 (ESR1), cadherin 1, type 1, E-cadherin (CDH1), TIMP metallopeptidase inhibitor 3 (TIMP3) and spleen tyrosine kinase (SYK) genes was detected in the tumors of 124, 19, 15, 15, and 6 patients with mean levels of 48.45%, 3.81%, 2.36%, 27.55%, and 10.81%, respectively. Plasma samples exhibited methylation in the same genes in 25, 10, 15, 17, and 3 patients with levels of 22.54%, 17.20%, 22.87%, 31.93%, and 27.42%, respectively. Cumulative methylation results confirmed different spectra in tumor and plasma samples. Simultaneous methylation in tumors and plasma were shown in less than 17% of patients. RASSF1A methylation levels in tumor samples statistically differ according to tumor size (P = .029), estrogen receptor (ER) and progesterone receptor (PR) status (P = .000 and P = .004), and immunohistochemical subtype (P = .000). Moreover, the positive correlation was found between RASSF1A methylation levels and percentage of cancer cells expressing ER and PR. The direct relationship between RASSF1A promoter methylation and expression of ER could aid the prognosis of hormonal therapy response.  相似文献   

14.
15.

Background

Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation.

Methods

Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene.

Results

The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38–76 %, depending on the gene. The highest MI value was found for RASSF1A (52 %) and the lowest for NPRL2/G21 (5 %). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71 % tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = −0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75–92 % NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found.

Conclusions

The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn’t seem to be a critical determinate of its promoter hypermethylation.  相似文献   

16.

Objectives

RASSF1A has been described to be differentially methylated between fetal and maternal DNA and can therefore be used as a universal sex-independent marker to confirm the presence of fetal sequences in maternal plasma. However, this requires highly sensitive methods. We have previously shown that Pyrophosphorolysis-activated Polymerization (PAP) is a highly sensitive technique that can be used in noninvasive prenatal diagnosis. In this study, we have used PAP in combination with bisulfite conversion to develop a new universal methylation-based assay for the detection of fetal methylated RASSF1A sequences in maternal plasma.

Methods

Bisulfite sequencing was performed on maternal genomic (g)DNA and fetal gDNA from chorionic villi to determine differentially methylated regions in the RASSF1A gene using bisulfite specific PCR primers. Methylation specific primers for PAP were designed for the detection of fetal methylated RASSF1A sequences after bisulfite conversion and validated.

Results

Serial dilutions of fetal gDNA in a background of maternal gDNA show a relative percentage of ∼3% can be detected using this assay. Furthermore, fetal methylated RASSF1A sequences were detected both retrospectively as well as prospectively in all maternal plasma samples tested (n = 71). No methylated RASSF1A specific bands were observed in corresponding maternal gDNA. Specificity was further determined by testing anonymized plasma from non-pregnant females (n = 24) and males (n = 21). Also, no methylated RASSF1A sequences were detected here, showing this assay is very specific for methylated fetal DNA. Combining all samples and controls, we obtain an overall sensitivity and specificity of 100% (95% CI 98.4%–100%).

Conclusions

Our data demonstrate that using a combination of bisulfite conversion and PAP fetal methylated RASSF1A sequences can be detected with extreme sensitivity in a universal and sex-independent manner. Therefore, this assay could be of great value as an addition to current techniques used in noninvasive prenatal diagnostics.  相似文献   

17.
Methylation-sensitive restriction endonuclease analysis (MSRA) followed by polymerase chain reaction (PCR) have been used to estimate the methylation level of 13 CpG dinucleotides in the promoter region of the putative suppressor gene RASSF1A (3p21.31) in squamous cell carcinomas of the uterine cervix (SCCs) carrying human papillomavirus (HPV) types 16, 18, and related types. Methylation of 3 to 13 CpG pairs has been found in 64% (25 out of 39) tumor DNA samples, 22% (2 out of 9) DNA samples from morphologically normal tissues adjacent to the tumor (P = 0.0306), and two out of three DNA samples from peripheral blood leukocytes of carcinoma patients. These CpG pairs are not methylated in the DNA of leukocytes of healthy donors (0 out of 10). The methylation level of the RASSF1A promoter region studied in tumors of the patients with regional lymph node metastases is significantly higher than in tumors of the patient that have no metastases (P = 8.5 × 10–12). The methylation frequency of gene RASSF1A is two times higher than the frequency of hemi- and homozygous deletions in the chromosome 3 region where the gene is located. The data obtained indicate that methylation is one of the main mechanisms of the RASSF1A gene inactivation in HPV-positive human cervical tumors. The methylation of this gene may be an early event in the genesis of cervical tumors, the methylation level increasing with tumor progression.  相似文献   

18.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

19.

Objectives

The aim of this cohort study was to examine the role of the chemokine (C-X-C motif) ligand 9 (CXCL9) on nasopharyngeal carcinoma (NPC).

Materials & Methods

Sera from 205 NPC patients and 231 healthy individuals, and 86 NPC tumor samples were enrolled. CXCL9 expression in tissue samples was analyzed by quantitative real-time PCR and immunohistochemistry. CXCL9 serum concentrations were measured by enzyme-linked immunosorbent assay.

Results

CXCL9 expression was significantly higher in tumors than in normal epithelium. CXCL9 serum concentrations were also significantly higher in NPC patients compared to those in healthy individuals (516.8±617.6 vs. 170.7±375.0 pg/mL, P<0.0001). Serum CXCL9 levels were significantly higher in NPC patients with higher tumor stages, nodal stages, and overall stages (P<0.001, P = 0.001, and P<0.001, respectively). We found a statistically significant correlation between the concentrations of CXCL9 and EBV DNA load in the NPC patients (Spearman’s correlation analysis; r = 0.473, P<0.001; 95% confidence interval, 0.346–0.582). Moreover, NPC patients with higher CXCL9 levels (>290 pg/mL, median) before treatment had worse prognoses for overall survival and disease-free survival (P = 0.045 and P = 0.008, respectively). Multivariate logistic regression analyses also indicated that higher CXCL9 serum levels were an independent prognostic factor for disease-free survival (P = 0.015).

Conclusion

Our study demonstrated that CXCL9 is associated with tumor burden and aggressiveness of NPC tumors and the serum level of this ligand may be useful as a prognostic indicator.  相似文献   

20.
Fibulin-3, originally identified in senescent and Werner syndrome fibroblasts, has been implicated in cell morphology, growth, adhesion and motility. Fibulin-3 exhibits both antitumor and oncogenic activities towards human cancers; however, the role of Fibulin-3 in hepatocellular carcinoma (HCC) remains elusive. In this study, we showed that both the mRNA and protein levels of Fibulin-3 were remarkably downregulated in HCC cell lines and fresh tissues. Immunohistochemical data revealed that Fibulin-3 was decreased in tumorous tissues in 67.1% (171/255) of cases compared to the corresponding adjacent nontumorous tissues. The results of statistical analysis indicated that low Fibulin-3 expression, defined by the receiver operating characteristic curve (ROC), was significantly associated with tumor differentiation (P = 0.008), clinical stage (P = 0.014) and serum AFP levels (P<0.01). Furthermore, Kaplan-Meier and multivariate analysis suggested that Fibulin-3 is an independent negative prognostic indicator for both overall (P<0.001) and recurrence-free (P = 0.036) survival. In addition, an in vitro study demonstrated that knockdown of Fibulin-3 by siRNA markedly increased cell viability and promoted cell invasion in HCC cells. Collectively, our data suggest that Fibulin-3 exhibits antitumor effects towards HCC and serves as a biomarker of unfavorable prognosis for this deadly disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号