首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lee KJ  Woo ER  Choi CY  Shin DW  Lee DG  You HJ  Jeong HG 《Life sciences》2004,74(8):1051-1064
This study investigated the protective effects of acteoside, a phenylethanoid glycoside, on the carbon tetrachloride-induced hepatotoxicity as well as the possible mechanisms involved in this protection in mice. Pretreatment with acteoside prior to the administration of carbon tetrachloride significantly prevented the increased serum enzymatic activities of alanine and aspartate aminotransferase in a dose-dependent manner. In addition, pretreatment with acteoside significantly prevented the increase in hepatic malondialdehyde formation and the depletion of the reduced glutathione content in the liver of carbon tetrachloride-intoxicated mice. Carbon tetrachloride-induced hepatotoxicity was also essentially prevented, as indicated by a liver histopathologic study. The effects of acteoside on cytochrome P450 (P450) 2E1, the major isozyme involved in carbon tetrachloride bioactivation were also investigated. Treatment of the mice with acteoside resulted in a significant decrease in the P450 2E1-dependent pnitrophenol and aniline hydroxylation in a dose-dependent manner. Consistent with these observations, the P450 2El protein levels were also lower. Acteoside exhibited anti-oxidant effects on FeCl2-ascorbate induced lipid peroxidation in a mouse liver homogenate, and on superoxide radical scavenging activity. These results suggest that the protective effects of acteoside against the carbon tetrachloride-induced hepatotoxicity possibly involve mechanisms related to its ability to block the P450-mediated carbon tetrachloride bioactivation and free radical scavenging effects.  相似文献   

2.
《Phytomedicine》2014,21(2):148-154
This study investigated the hepatoprotective activity of saponarin, isolated from Gypsophila trichotoma Wend., using in vitro/in vivo hepatotoxicity model based on carbone tetrachloride (CCl4)-induced liver damage in male Wistar rats. The effect of saponarin was compared with those of silymarin. In vitro experiments were carried out in primary isolated rat hepatocytes. Cell incubation with CCl4 (86 μmol l−1) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH and elevation in MDA quantity. Cell pre-incubation with saponarin (60–0.006 μg/ml) significantly ameliorated CCl4-induced hepatic damage in a concentration-dependent manner. These results were supported by the following in vivo study. Along with decreased MDA quantity and increased level of cell protector GSH, seven day pre-treatment of rats with saponarin (80 mg/kg bw; p.o.) also prevented CCl4 (10%, p.o.)-caused oxidative damage by increasing antioxidant enzyme activities (CAT, SOD, GST, GPx, GR). Biotransformation phase I enzymes were also assessed. Administered alone, saponarin decreased EMND and AH activities but not at the same extent as CCl4 did. However, pre-treatment with saponarin significantly increased enzyme activities in comparison to CCl4 only group. The observed biochemical changes were consistent with histopathological observations where the hepatoprotective effect of saponarin was comparative to the effects of the known hepatoprotecor silymarin. Our results suggest that saponarin, isolated from Gypsophila trichotoma Wend., showed in vitro and in vivo hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

3.
We investigated the effects of curcumin, a major antioxidant constituent of turmeric, on hepatic cytochrome P450 (CYP) activity in rats. Wistar rats received curcumin-containing diets (0.05, 0.5 and 5 g/kg diet) with or without injection of carbon tetrachloride (CCl(4)). The hepatic CYP content and activities of six CYP isozymes remained unchanged by curcumin treatment, except for the group treated with the extremely high dose (5 g/kg). This suggested that daily dose of curcumin does not cause CYP-mediated interaction with co-administered drugs. Chronic CCl(4) injection drastically decreased CYP activity, especially CYP2E1 activity, which is involved in the bioactivation of CCl(4), thereby producing reactive free radicals. Treatment with curcumin at 0.5 g/kg alleviated the CCl(4)-induced inactivation of CYPs 1A, 2B, 2C and 3A isozymes, except for CYP2E1. The lack of effect of curcumin on CYP2E1 damage might be related to suicidal radical production by CYP2E1 on the same enzyme. It is speculated that curcumin inhibited CCl(4)-induced secondary hepatic CYPs damage through its antioxidant properties. Our results demonstrated that CYP isozyme inactivation in rat liver caused by CCl(4) was inhibited by curcumin. Dietary intake of curcumin may protect against CCl(4)-induced hepatic CYP inactivation via its antioxidant properties, without inducing hepatic CYPs.  相似文献   

4.
The aim of this study was to examine the protective effects of melatonin against CCl4-induced hepatotoxicity in the rat. Twenty-four male Wistar rats were divided into three groups. Group I was used as a control. Rats in group II were injected every other day with CCl4 for 1 month, whereas rats in group III were injected every other day with CCl4 and melatonin for 1 month. At the end of the experiment, all animals were killed by decapitation and blood samples were obtained. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total and conjugated bilirubin levels were determined. For histopathological evaluation, livers of all rats were removed and processed for light microscopy. All serum biochemical parameters were significantly higher in animals treated with CCl4 than in the controls. When rats injected with CCl4 were treated with melatonin, significantly reduced elevations in serum biochemical parameters were found. In liver sections of the CCl4-injected group, necrosis, fibrosis, mononuclear cell infiltration, haemorrhage, fatty degeneration and formation of regenerative nodules were observed. Additionally, apoptotic figures, microvesicular steatosis and hydropic degeneration in hepatocytes were seen in this group. In contrast, the histopathological changes observed after administration of CCl4 were lost from rats treated with CCl4 and melatonin. Except for mild hydropic degeneration of the hepatocytes, a normal lobular appearance was seen in the livers of this group. The results of our study indicate that melatonin treatment prevents CCl4-induced liver damage in rats.  相似文献   

5.
Carbon tetrachloride (CCl4) is a known environmental biohazard, which induces lipid peroxidation (LPO) and oxidative damage in rat liver. In this study, the hepatoprotective effect of Gossypitrin, a flavonoid extracted from Hibiscus elatus S.W, was investigated against the CCl4-induced in vivo hepatotoxicity. The levels of malondialdehyde (MDA) were assayed as an index of LPO and the levels of catalase (CAT) activity as a biomarker of oxidative damage. Leakage of aspartate aminotransferase (ALT) and lactate dehydrogenase (LDH), liver weight/body weight ratio as well as morphological parameters were used as signs of hepatotoxicity. CCl4 (1 ml/kg), intraperitoneally injected into rats, caused increased MDA production and CAT activity, and also a significant ALT and LDH leakage as compared to levels of these constituents in the control group. Changes in morphology, including steatosis, cells forming balloon cells and necrosis were evaluated in the hepatotoxin-induced damage. Treatment of rats with Gossypitrin (3.98, 5.97 and 8.95 mg/kg) 2 h before and 2 h after CCl4 injection, protected hepatocytes against cell injury induced by CCl4 and its efficacy as an antioxidant was similar to vitamin E (used as a reference antioxidant). These results are consistent with the conclusion that the toxicity of CCl4 is due to LPO and the generation of reactive oxygen species (ROS), and that Gossypitrin's protective effects relate to its direct radical scavenging ability and other antioxidative processes induced by its structure.  相似文献   

6.
In recent years, N-acetyl-L-cysteine (NAC) has been widely investigated as a potentially useful protective and antioxidative agent to be applied in many pathological states. The aim of the present work was further evaluation of the mechanisms of the NAC protective effect under carbon tetrachloride-induced acute liver injuries in rats. The rat treatment with CCl4 (4 g/kg, intragastrically) caused pronounced hepatolysis observed as an increase in blood plasma bilirubin levels and hepatic enzyme activities, which agreed with numerous previous observations. The rat intoxication was accompanied by an enhancement of membrane lipid peroxidation (1.4-fold) and protein oxidative damage (protein carbonyl group and mixed protein-glutathione disulphide formations) in the rat liver. The levels of nitric oxide in blood plasma and liver tissue significantly increased (5.3- and 1.5-fold, respectively) as blood plasma triacylglycerols decreased (1.6-fold). The NAC administration to control and intoxicated animals (three times at doses of 150 mg/kg) elevated low-molecular-weight thiols in the liver. The NAC administration under CCl4-induced intoxication prevented oxidative damage of liver cells, decreased membrane lipid peroxidation, protein carbonyls and mixed protein-glutathione disulphides formation, and partially normalized plasma triacylglycerols. At the same time the NAC treatment of intoxicated animals did not produce a marked decrease of the elevated levels of blood plasma ALT and AST activities and bilirubin. The in vitro exposure of human red blood cells to NAC increased the cellular low-molecular-weight thiol levels and retarded tert-butylhydroperoxide-induced cellular thiol depletion and membrane lipid peroxidation as well as effectively inhibited hypochlorous acid-induced erythrocyte lysis. Thus, NAC can replenish non-protein cellular thiols and protect membrane lipids and proteins due to its direct radical-scavenging properties, but it did not attenuate hepatotoxicity in the acute rat CCl4-intoxication model.  相似文献   

7.
8.
The tropical fruit sapodilla (Manilkara zapota syn. Achras zapota) is a rich source of nutrients, minerals and a myriad of bioactive phytochemicals such as flavonoids and catechins. Pharmacologically, sapodilla has been shown to exhibit anti-bacterial, anti-parasitic, anti-fungal, antiglycative, hypocholesterolemic and anti-cancer effects. However, its influence on hepatic tissue and serum lipids remains obscure. To address this, we used an in vivo model of liver damage to elucidate the effect of lyophilized sapodilla extract (LSE) treatment in carbon tetra chloride (CCl4) intoxicated rats. Exposure of CCl4 resulted in elevation of serum biomarkers of liver damage (aspartate transaminase, alanine aminotransferase, γ-glutamyl transferase and alkaline phosphatase), bilirubin and dysregulation of serum lipid profile (cholesterol and triglycerides). These effects were significantly and dose-dependently reversed by LSE treatment (250 and 500 mg/kg). Administration of LSE also reduced the structural damage caused by CCl4 in the liver. Furthermore, determination of oxidative stress parameters (malondialdehyde and non-protein sulfhydryls) revealed that LSE treatment mitigated CCl4-triggered modulation of both molecules. LSE also showed a strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. In conclusion, the present study discloses the hepatoprotective and lipid-lowering effects of lyophilized sapodilla extract against CCl4-induced liver damage, an effect, at least in part, mediated by its antioxidant activity.  相似文献   

9.
Melatonin is an indolamine, mainly secreted by the pineal gland into the blood of mammalian species. The potential for protective effects of melatonin on carbon tetrachloride (CCl(4))-induced acute liver injury in rats was investigated in this work. CCl(4) exerts its toxic effects by generation of free radicals; it was intragastrically administered to male Wistar rats (4 g kg(-1) body weight) at 20 h before the animals were decapitated. Melatonin (15 mg kg(-1) body weight) was administered intraperitoneally three times: 30 min before and at 2 and 4 h after CCl(4) injection. Rats injected with CCl(4) alone showed significant lipid and hydropic dystrophy of the liver, massive necrosis of hepatocytes, marked increases in free and conjugated bilirubin levels, elevation of hepatic enzymes (alanine aminotransferase and aspartate aminotransferase) in plasma, as well as NO accumulation in liver and in blood. Melatonin administered at a pharmacological dose diminished the toxic effects of CCl(4). Thus it decreased both the structural and functional injury of hepatocytes and clearly exerted hepatoprotective effects. Melatonin administration also reduced CCl(4)-induced NO generation. These findings suggest that the effect of melatonin on CCl(4)-induced acute liver injury depends on the antioxidant action of melatonin.  相似文献   

10.
Oxidative stress is involved in the pathogenesis of chemically mediated liver injury. Since glycosaminoglycans possess antioxidant activity, the aim of this work was to assess the protective effects of hyaluronic acid and chondroitin-4-sulphate treatment in a model of carbon tetrachloride-induced liver injury. Liver damage was induced in male rats by an intraperitoneal injection of carbon tetrachloride (1 ml/kg in vegetal oil). Serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde, plasma TNF-alpha, hepatic reduced glutathione and catalase, and myeloperoxidase, an index of polymorphonuclear infiltration in the jeopardised hepatic tissue, were evaluated 24 h after carbon tetrachloride administration. Carbon tetrachloride produced a marked increase in serum alanine aminotransferase and aspartate aminotransferase activities, primed lipid peroxidation, enhanced plasma TNF-alpha levels, induced a severe depletion of reduced glutathione and catalase, and promoted neutrophil accumulation. Intraperitoneal treatment of rats with hyaluronic acid (25 mg/kg) or chondroitin-4-sulphate (25 mg/kg) failed to exert any effect in the considered parameter, while the combination treatment with both glycosaminoglycans (12,5 + 12,5 mg/kg) decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, inhibited lipid peroxidation by reducing hepatic malondialdehyde, reduced plasma TNF-alpha, restored the endogenous antioxidants, and finally decreased myeloperoxidase activity. These results suggest that hyaluronic acid and chondroitin-4-sulphate possess a different antioxidant mechanism and consequently the combined administration of both glycosaminoglycans exerts a synergistic effect with respect to the single treatment.  相似文献   

11.
This study was planned to investigate the protective effect of l (+)‐ascorbic acid (Vit C) on CCl4‐induced hepatotoxicity and oxidative stress in the liver of Wistar rats (Rattus Norvegicus, strain Wistar). Twenty‐four adult male Wistar rats were fed with standard rat chow diet for 10 days and randomly were divided into four groups of six each as follows: (1) control, (2) CCl4, (3) “CCl4 + Vit C”, (4) Vit C groups. CCl4 was applied to rats belonging to CCl4 and “CCl4 + Vit C” groups subcutaneously at 1 mg kg?1 dose CCl4 for 3 days. Vit C applied to “CCl4 + Vit C” and “Vit C” group rats intraperitoneally at 300 mg kg?1 dose for 3 days. All rats were sacrificed and livers were quickly removed on the fourth day of the experiment. MDA, total glutathione (T.GSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‐PX) activities were measured in the liver of all groups of rats and also serum alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were detected to determine liver functions in all groups of rats. Histopathological changes were evaluated by light and transmission electron microscopes. In “CCl4 + Vit C” group, MDA level was significantly decreased (p < 0.05) and SOD, CAT, GSH‐PX activities were significantly increased (p < 0.005, 0.01, 0.05) respectively, T.GSH level was significantly increased (p < 0.005) and serum ALT and AST activities were significantly decreased (p < 0.01, 0.05), respectively, when compared with CCl4 group. These results show that Vit C has a highly protective effect on hepatotoxicity and oxidative stress caused by CCl4. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of an aqueous extract of Origanum vulgare (OV) leaves extract on CCl4-induced hepatotoxicity was investigated in normal and hepatotoxic rats. To evaluate the hepatoprotective activity of OV, rats were divided into six groups: control group, O. vulgare group, carbon tetrachloride (CCl4; 2 ml/kg body weight) group, and three treatment groups that received CCl4 and OV at doses of 50, 100, 150 mg/kg body weight orally for 15 days. Alanine amino transferase (ALT), alkaline phosphatase (ALP), and aspartate amino transferase (AST) in serum, lipid peroxide (LPO), GST, CAT, SOD, GPx, GR, and GSH in liver tissue were estimated to assess liver function. CCl4 administration led to pathological and biochemical evidence of liver injury as compared to controls. OV administration led to significant protection against CCl4-induced hepatotoxicity in dose-dependent manner, maximum activity was found in CCl4?+?OV3 (150 mg/kg body weight) groups and changes in the hepatocytes were confirmed through histopathological analysis of liver tissues. It was also associated with significantly lower serum ALT, ALP, and AST levels, higher GST, CAT, SOD, GPx, GR, and GSH level in liver tissue. The level of LPO also decreases significantly after the administration of OV leaves extract. The biochemical observations were supplemented with histopathological examination of rat liver sections. Thus, the study suggests O. vulgare showed protective activity against CCl4-induced hepatotoxicity in Wistar rats and might be beneficial for the liver toxicity.  相似文献   

13.
Our earlier studies in vitro have shown that eugenol inhibits liver microsomal monooxygenase activities and carbon tetrachloride (CCl4)-induced lipid peroxidation (Free Rad. Res. 20,253-266,1994). The objective of the present investigation was to study the in vivo protective effect of eugenol against CCI4 toxicity. Eugenol (5 or 25 mg/kg body wt) given orally for 3 consecutive days did not alter the levels of serum glutamic oxalacetic transaminase (SGOTJ, microsomal enzymes such as cytochrome P450 reductase, glucose-6-phosphatase (G-6-Pase) xenobiotic-metabolizing enzymes (aminopyrine-N-demethylase, N-nitrosodimethylamine-demethylase and ethoxyresorufin-O-deethylase) and liver histology. Doses of eugenol (5 or 25 mg/kg) administered intragastrically to each rat on three consecutive days i.e. 48 hr, 24 hr and 30 min before a single oral dose of CCU (2.5 ml/kg body wt) prevented the rise in SGOT level without appreciable improvement in morphological changes in liver. Eugenol pretreatment also did not influence the decrease in microsomal cytochrome P450 content, G-6-Pase and xenobiotic-metabolizing enzymes brought about by CCI4. Since eugenol is metabolized and cleared rapidly from the body, the dose schedule was modified in another experiment. Eugenol (0.2,1.0,5.0 or 25 mg/kg) when given thrice orally i.e. prior to (-1 hr) along with (0 hr) and after (+ 3 hr) the i.p. administration of CCI4 (0.4 ml/kg) prevented significantly the rise in SGOT activity as well as liver necrosis. The protective effect was more evident at 1 mg and 5 mg eugenol doses. However, the decrease in microsomal G-6-Pase activity by CCI4 treatment was not prevented by eugenol suggesting that the damage to endoplasmic reticulum is not protected. The protective effect of eugenol against CC14 induced hepatotoxicity is more evident when it is given concurrently or soon after rather than much before CCU treatment.  相似文献   

14.
It has been proposed carbon tetrachloride (CCl4) intoxication due to the production of free radicals and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) overload results hepatotoxicity. Phosphatidylserine (PS) has shown antioxidant activity in numerous studies. Therefore, this study was aimed to investigate the effects of PS liposomes treatment against the CCl4-induced hepatotoxicity in a rat model. Male Wistar rats were treated with PS (10 mg/kg, oral) or phosphatidylcholine liposomes (PC) (10 mg/kg, oral) for 3 days before CCl4 (2 ml/kg; ip once on the third day) injection. The serum level of ALT, AST, and ALP were measured. Also, antioxidant assays were performed. Administration of PS with CCl4 significantly inhibited alterations in the serum levels of AST, ALP (**P < 0.01), and ALT (***P < 0.001) compared with control group. Furthermore, measurement of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels indicated that PS significantly reduced reactive oxygen species. The results of the present study showed the hepatoprotective effects of PS against CCl4-induced hepatotoxicity in rats.  相似文献   

15.
目的

探讨枯草芽胞杆菌产物维生素K2(MK-7)对四氯化碳诱导的急性肝损伤的保护作用及机制。

方法

选取SPF级实验用6~8周龄SD雄性大鼠30只, 体质量200~220 g, 随机分为5组(每组6只): 空白组、肝损伤模型组、模型+溶剂组、模型+水飞蓟素组和模型+维生素K2组。空白组不做额外处理, 其余各组均予四氯化碳染毒, 溶剂组给予与维生素K2组相同体积的大豆油, 水飞蓟素组添加水飞蓟素100 mg/100 g体质量, 维生素K2组用维生素K2每日灌胃(给药剂量为2 μg/100 g体质量)。1周后观察大鼠体征和肝脏外观、肝脏炎症及微肉芽肿、肝细胞空泡化结构, 检测血液AST、ALT、MDA、SOD、TNF-α和IL-6含量。

结果

与肝损伤模型组大鼠比, 模型+维生素K2组肝脏指数下降(t=3.250 0, P=0.031 4)。HE染色结果显示, 与肝损伤模型组大鼠比, 模型+维生素K2组空泡化程度明显降低, 损伤较为弥散。与肝损伤模型组大鼠比, 模型+维生素K2组肝功、氧化应激指标及相关炎症因子水平降低[AST(t=4.283 0, P=0.012 8)、ALT(t=2.582 0, P=0.041 6)、MDA(t=7.028 0, P=0.005 9)、SOD(t=3.384 0, P=0.011 7)、TNF-α(t=3.459 0, P=0.013 5)、IL-6(t=2.422 0, P=0.041 8)]。

结论

维生素K2可减轻大鼠急性肝损伤程度, 其作用可通过改善抗氧化酶体系、抑制氧化应激反应及降低炎性因子水平而实现。

  相似文献   

16.
Induction of P450HE1 by pyridine was compared with that by ethanol, and the resulting potentiation of the pneumotoxicity and hepato-toxicity following carbon tetrachloride inhalation by pyridine was examined. Rats were treated with ethanol as either a 10% solution in the drinking water or as a daily bolus (3 ml/kg, ip) dose for 7 days or one bolus dose of pyridine (200 mg/kg, ip) and compared for P450IIE1 apoprotein content by immunoblot analysis. Ethanol in the drinking water and pyridine elevated both hepatic and pulmonary P450IIE1 apoprotein content, but bolus dose ethanol did not. The induction was greatest in the pyridine group. In the interaction study, rats were treated with pyridine (200 mg/kg, ip) and 12 hours later were exposed to CC14 (8000 ppm for 3 hours). Pulmonary injury and hepatic damage were assessed 24 hours later by bronchoalveolar lavage fluid (BALF) analysis [γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), and total protein] and serum sorbitol dehydrogenase (SDH) activity, respectively. Pyridine alone had no effect on BALF or SDH but enhanced GGT and LDH release into the BALF and SDH release into the serum when compared with CC14 exposure alone. Evaluation of the liver at the light microscopic level revealed characteristic CCl4-induced centrilobular necrosis which was potentiated by pyridine. No changes were observed in the lung by light microscopic evaluation. Pyridine induced pulmonary and hepatic microsomal apoprotein levels of cytochrome P450IIE1 two- and 2- to sixfold, respectively. Exposure to CC14 decreased hepatic but not pulmonary P450IIE1 levels. Induction of cytochrome P450IIE1 by pyridine increases the bioactivation of CC14 in both the liver and lung, leading to enhanced toxicity.  相似文献   

17.
Extreme copper deficiency has been shown to enhance CCl4-induced injury in rats. CCl4 hepatotoxicity was studied in rats with copper deficiency moderated by limiting deficiency periods to 5 or 6 weeks, using minimally adequate dietary zinc and including a marginal copper diet. Also, housing some rats in groups of six, rather than individually, was found to moderate the effects of low copper intake. Weanling male rats were fed copper at either 6, 2, or 0.2 mg/kg diet (adequate, marginal, deficient). Copper-zinc superoxide dismutase activity levels for singly and group-housed marginal rats were 80% and 93%, respectively, of adequate values. Values for deficient rats were 35% (singles) and 47% (group). In singly housed rats, a CCl4 dose of 400 microliters/kg intraperitoneally increased serum sorbitol dehydrogenase activities, indicators of cell membrane hepatotoxicity, in inverse proportion to dietary copper. A lower dose (100 microliters/kg) also produced smaller sorbitol dehydrogenase increases in adequate rats compared with deficients, but produced lowest increases in the marginals. The latter pattern also occurred in group-housed rats given the higher CCl4 dose, but the difference for adequate and marginal rats was not significant. The higher CCl4 dose, in singly housed rats, decreased liver glucose-6-phosphatase activities independently of copper intake. These activities are inversely proportional to microsomal lipid damage. In conclusion, moderate copper deficiency enhanced CCl4 hepatotoxicity, but the effect depended on injury criteria, CCl4 dose, and actual copper status as assessed by copper-zinc superoxide dismutase activities.  相似文献   

18.
Xanthine dehydrogenase activity was determined in blood serum of rats in which diabetes had been induced by alloxan administration. The results show that there is no statistical significance in the difference found for normal and diabetic rats. Alloxan produced an inhibition in the enzyme activity in animals in which a carbon tetrachloride hepatotoxicity had been induced.  相似文献   

19.
Summary The hepatoprotective activities of total flavonoids of Laggera alata (TFLA) were evaluated by carbon tetrachloride (CCl4)-induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage. In vitro, TFLA at a concentration range of 1–100 g/ml improved cell viability and inhibited cellular leakage of two enzymes, hepatocyte aspartate aminotransferase (AST) and alanine aminotransferase (ALT), caused by CCl4. In vivo, oral treatment with TFLA at doses of 50, 100, and 200 mg/kg significantly reduced the levels of AST, ALT, total protein, and albumin in serum and the hydroxyproline and sialic acid levels in liver. Histopathological examinations revealed that liver damage were improved when treated with TFLA. Meanwhile, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals scavenging activities of TFLA were also determinated. To understand the exact components of TFLA responsible for the hepatoprotective effect, nine flavonoid compounds were isolated and identified from TFLA. In conclusion, the present investigation was the first to verify the hepatoprotective effect of L. alata in vitro and in vivo. The hepatoprotective action of TFLA is likely related to its potent antioxidative and anti-inflammatory activity. Neutralizing reactive oxygen species by nonenzymatic mechanisms and enhancing the activity of original natural hepatic-antioxidant enzymes may be the main mechanisms of TFLA against CCl4-induced injury.  相似文献   

20.
The aim of this study was to identify apolar aldehydes in liver homogenates from rats with CCl4-induced cirrhosis and, as a corollary, the antioxidant effect of zinc administration. The study was performed in five control rats and in ten cirrhotic rats which were further sub-divided into two groups to receive either a standard diet or one supplemented with zinc. The percentage of hepatic fibrosis, plasma malondialdehyde concentration and alanine aminotransferase activity were measured as well as the following aldehydes: hexanal, octanal, decanal, 2-hexenal, 2-octenal, 2-nonenal, 2,4-heptadienal and 2,4-decadienal. Of the 10 cirrhotic rats, 4 had elevated concentrations of the highly toxic 2,4-dialkenals which coincided with a higher percentage of fibrosis and plasma alanine aminotransferase activity. These aldehydes were not observed in the control group. Zinc administration was associated with a reduction of the hepatic malondialdehyde concentration and an amelioration on the degree of hepatic injury. In conclusion, this study demonstrates the presence of the highly toxic 2,4-dialkenals in hepatic tissue of rats whith CCl4-induced cirrhosis. Results obtained would suggest that these particular aldehydes may be related to the severity of the hepatic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号