首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.  相似文献   

2.
《Biophysical journal》2022,121(19):3745-3752
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high-affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA binding and unbinding as well as the association and dissociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared with the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.  相似文献   

3.
Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2]4+, which consists of two Ru(phen)2dppz2+ moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins.  相似文献   

4.
Ruthenium complexes with one dipyrido[3,2-a:2′-3′-c]phenazine (dppz) ligand, e.g. [Ru(phen)2(dppz)]2+ (phen = phenanthroline), shows strong binding to double helical DNA and are well-known DNA “light-switch” molecules. We have here investigated four new [Ru(phen)2(dppz)]2+ derivatives with different bulky quaternary ammonium substituents on the dppz ligand to find relationships between molecular structure and intercalation kinetics, which is considered to be of importance for antitumor applicability. Linear dichroism spectroscopy shows that the enantiomers of the new complexes exhibit very similar binding geometries (intercalation of dppz moiety between adjacent DNA base pairs) as the enantiomers of the parent [Ru(phen)2(dppz)]2+ complex. Absorption spectra and luminescence properties provide further evidence for a final intercalative binding mode which has to be reached by threading of a bulky moiety between the strands of the DNA. Δ-enantiomers of all the new complexes show much slower association and dissociation kinetics than that of a reference complex without a cationic substituent. Kinetics were not very different whether the bulky quaternary group was derived from hexamethylene tetramine or 1,4-diazabicyclo-(2,2,2)octane (DABCO) or whether it had one or two positive charges. However, a complex in which the hexamethylene tetramine substituent is attached via a phenyl group showed a lowered association rate, in addition to an improved quantum yield of luminescence. A second positive charge on the DABCO substituent resulted in a much slower dissociation rate, suggesting that the distance from the Ru-centre and the amount of charge are both important for threading intercalation kinetics.  相似文献   

5.
The cleavage reaction of topoisomerase II, which creates double-stranded DNA breaks, plays a central role in both the cure and initiation of cancer. Therefore, it is important to understand the cellular processes that repair topoisomerase II-generated DNA damage. Using a genome-wide approach with Saccharomyces cerevisiae, we found that Δmre11, Δxrs2, Δrad50, Δrad51, Δrad52, Δrad54, Δrad55, Δrad57 and Δmms22 strains were hypersensitive to etoposide, a drug that specifically increases levels of topoisomerase II-mediated DNA breaks. These results confirm that the single-strand invasion pathway of homologous recombination is the major pathway that repairs topoisomerase II-induced DNA damage in yeast and also indicate an important role for Mms22p. Although Δmms22 strains are sensitive to several DNA-damaging agents, little is known about the function of Mms22p. Δmms22 cultures accumulate in G2/M, and display an abnormal cell cycle response to topoisomerase II-mediated DNA damage. MMS22 appears to function outside of the single-strand invasion pathway, but levels of etoposide-induced homologous recombination in Δmms22 cells are lower than wild-type. MMS22 is epistatic with RTT101 and RTT107, genes that encode its protein binding partners. Finally, consistent with a role in DNA processes, Mms22p localizes to discrete nuclear foci, even in the absence of etoposide or its binding partners.  相似文献   

6.
Characterization of the thermodynamics of DNA– drug interactions is a very useful part in rational drug design. Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) and UV melting experiments have been used to analyze the multivalent (intercalation plus minor groove) binding of the antitumor antibiotic chartreusin to DNA. Using DNA UV melting studies in the presence of the ligand and the binding enthalpy determined by ITC, we determined that the binding constant for the interaction was 3.6 × 105 M–1 at 20°C, in a solution containing 18 mM Na+. The DNA–drug interaction was enthalpy driven, with a ΔHb of –7.07 kcal/mol at 20°C. Binding enthalpies were determined by ITC in the 20–35°C range and used to calculate a binding-induced change in heat capacity (ΔCp) of –391 cal/mol K. We have obtained a detailed thermodynamic profile for the interaction of this multivalent drug, which makes possible a dissection of ΔGobs into the component free energy terms. The hydrophobic transfer of the chartreusin chromophore from the solution to the DNA intercalating site is the main contributor to the free energy of binding.  相似文献   

7.
The binding of the novel cytotoxic acridine derivative, 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (ACRAMTU) to various self-complementary oligonucleotide duplexes has been studied by combined high-resolution NMR spectroscopy/restrained molecular dynamics and equilibrium binding assays to establish the sequence and groove specificity of intercalation. The binding mode in the sequences d(GGACGTCC)2 and d(GGAGCTCC)2 was deduced from chemical shift changes and intermolecular NOEs between the ligand and the oligonucleotides. ACRAMTU intercalated into the 5′-CG/CG and 5′-GA/TC base steps, and penetration of the duplexes occurred from the minor groove. Intercalation of ACRAMTU in d(GGTACC)2 occurs at the central TA/TA step, based on the absence of the internucleotide A4H8–T3H1′ and A4H8–T3H3′ cross-peaks in the 1:1 complex of this sequence. An energy- minimized AMBER model of the 1:2 complex, [d(GGAGCTCC)2(ACRAMTU)2], was generated, which was based on restricted molecular dynamics/ mechanics calculations using 108 NOE distance restraints (including 11 DNA–drug distances per ligand). Equilibrium dialysis experiments were performed using octamers containing various base steps present in the ‘NMR sequences’. The highest affinity for ACRAMTU was observed in d(TATAT ATA)2, followed by d(CGCGCGCG)2 and d(GAG ATCTC)2. The binding levels for CG/CG and GA/TC were virtually the same. The unusual tolerance of the GA/TC intercalation site and the pronounced groove specificity of ACRAMTU play a significant role in the molecular recognition between the corresponding platinum conjugate, Pt-ACRAMTU, and DNA.  相似文献   

8.
The interaction between DNA and a benzothiazole-quinoline cyanine dye with a trimethine bridge (TO-PRO-3) results in the formation of three noncovalent complexes. Unbound TO-PRO-3 has an absorption maximum (λmax) of 632 nm, while the bound dyes (with calf thymus DNA) have electronic transitions with λmax = 514nm (complex I), 584nm (complex II) and 642 nm (complex III). The blue shifts in the electronic transitions and the bisignate shape of the circular dichroism bands indicate that TO-PRO-3 aggregates with DNA. Complex I has a high dye:base pair stoichiometry, which does not depend on base sequence or base modifications. The bound dyes exhibit strong interdye coupling, based on studies with a short oligonucleotide and on enhanced resonance scattering. From thermal dissociation studies, the complex is weakly associated with DNA. Studies with poly(dGdC)2 and poly(dIdC)2 and competitive binding with distamycin demonstrate that complex II is bound in the minor groove. This complex stabilizes the helix against dissociation. For complex III, the slightly red-shifted electronic transition and the stoichiometry are most consistent with intercalation. Using poly(dAdT)2, the complexes have the following dye mole fractions (Xdye): Xdye = 0.65 (complex I), 0.425 (complex II) and 0.34 (complex III).  相似文献   

9.
F A Tanious  S F Yen  W D Wilson 《Biochemistry》1991,30(7):1813-1819
The interaction of a symmetric naphthalene diimide with alkylamino substituents at each imide position was investigated with the alternating sequence polymers, poly[d(A-T)]2 and poly[d(G-C)]2. Spectrophotometric binding studies indicate strong binding of the diimide to both sequences although the GC binding constant is 20-25 times larger than the AT binding constant. Analysis of the effects of salt concentration on the binding equilibria shows that the diimide forms two ion pairs in its complex with both polymers as expected for a simple dication. Stopped-flow kinetics experiments demonstrate that the diimide both associates and dissociates from DNA more slowly than classical intercalators with similar binding constants. Analysis of salt concentration effects on dissociation kinetics rate constants (kd) reveals that slopes in log kd versus log [Na+] plots are only approximately half the value obtained for classical dicationic intercalators that have both charged groups in the same groove. These kinetics results support a threading intercalation model, with one charged diimide substituent in each of the DNA grooves rather than with both side chains in the same groove, for the diimide complex with DNA. In the rate-determining step of the mechanism for dissociation of a threading complex only one ion pair is broken; the free side chain can then slide between base pairs to put both diimide side chains in the same groove, and this is followed by rapid full dissociation of the diimide. This sequential release of ion pairs makes the dissociation slope for dicationic threading intercalators more similar to the slope for classical monocationic intercalating ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Time correlated Single Photon Counting study (TCSPC) was performed for the first time to evaluate the effect of resveratrol (RES) and genistein (GEN) at 10–100 μM and 10–150 μM respectively, in modulating the DNA conformation and the variation induced due to intercalation by the dyes, ethidium bromide (EtBr) and acridine orange (AO). It is demonstrated using UV-absorption and fluorescence spectroscopy that RES and GEN, at 50 μM and 100 μM respectively can bind to DNA resulting in significant de-intercalation of the dyes, preventing their further intercalation within DNA. Hyperchromicity with red/blue shifts in DNA when bound to dyes was reduced upon addition of RES and GEN. DNA-dependent fluorescence of EtBr and AO was quenched in the presence of RES by 87.97% and 79.13% respectively, while similar quenching effect was observed for these when interacted with GEN (85.52% and 83.85%). It is found from TCSPC analysis that the higher lifetime component or constituent of intercalated dyes (τ2, A 2) decreased with the subsequent increase in smaller component or constituent of free dye (τ1, A 1) after the interaction of drugs with the intercalated DNA. Thus these findings signify that RES and GEN can play an important role in modulating DNA intercalation, leading to the reduction in DNA-directed toxicity.  相似文献   

11.
Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105–183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K’d1 = 222 µM and K’d2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = –29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH’1 = 115.7 KJ/mole, TΔS’1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH’2 = –106.3 KJ/mole, TΔS’2 = –75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1.  相似文献   

12.
We have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B (McMurray & van Holde, 1986). In this report, we have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, we have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. We have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of [3H]-8-azidoethidium to the core particle clearly shows that less than 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when approximately 14 ethidium molecules are bound by intercalation to each core particle and less than 1.0 nonintercalated ion pair was formed per core particle.  相似文献   

13.
DNA binding of the Type 1 DNA polymerase from Thermus aquaticus (Taq polymerase) and its Klentaq large fragment domain have been studied as a function of temperature. Equilibrium binding assays were performed from 5 to 70°C using a fluorescence anisotropy assay and from 10 to 60°C using isothermal titration calorimetry. In contrast to the usual behavior of thermophilic proteins at low temperatures, Taq and Klentaq bind DNA with high affinity at temperatures down to 5°C. The affinity is maximal at 40–50°C. The ΔH and ΔS of binding are highly temperature dependent, and the ΔCp of binding is –0.7 to –0.8 kcal/mol K, for both Taq and Klentaq, with good agreement between van’t Hoff and calorimetric values. Such a thermodynamic profile, however, is generally associated with sequence-specific DNA binding and not non- specific binding. Circular dichroism spectra show conformational rearrangements of both the DNA and the protein upon binding. The high ΔCp of Taq/Klentaq DNA binding may be correlated with structure-specific binding in analogy to sequence- specific binding, or may be a general characteristic of proteins that primarily bind non-specifically to DNA. The low temperature DNA binding of Taq/Klentaq is suggested to be a general characteristic of thermophilic DNA binding proteins.  相似文献   

14.
All neurodegenerative diseases feature aggregates, which usually contain disease‐specific diagnostic proteins; non‐protein constituents, however, have rarely been explored. Aggregates from SY5Y‐APPSw neuroblastoma, a cell model of familial Alzheimer''s disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized “contactome” comprising 11 subnetworks, centered on 24 high‐connectivity hubs. Remarkably, all 24 are nucleic acid‐binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer''s and control aggregates. RNA fragments were mapped to the human genome by RNA‐seq and DNA by ChIP‐seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5‐to 2.5‐fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y‐APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E‐box/CLEAR motifs. We identified many G‐quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid‐binding proteins. After RNA‐interference knockdown of the translational‐procession factor EEF2 to suppress translation in SY5Y‐APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.  相似文献   

15.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   

16.
The i-motif is a four-stranded structure formed by two intercalated parallel duplexes containing hemiprotonated C•C+ pairs. In order to describe the sequence of reactions by which four C-rich strands associate, we measured the formation and dissociation rates of three [TCn]4 tetramers (n = 3, 4 and 5), their dissociation constant and the reaction order for tetramer formation by NMR. We find that TCn association results in the formation of several tetramers differing by the number of intercalated C•C+ pairs. The formation rates of the fully and partially intercalated species are comparable but their lifetimes increase strongly with the number of intercalated C•C+ pairs, and for this reason the single tetramer detected at equilibrium is that with optimal intercalation. The tetramer half formation times vary as the power −2 of the oligonucleotide concentration indicating that the reaction order for i-motif formation is 3. This observation is inconsistent with a model supposing association of two preformed duplex and suggests that quadruplex formation proceeds via sequential strand association into duplex and triplex intermediate species and that triplex formation is rate limiting.  相似文献   

17.
Fluorescent DNA probes with 1,6-hexanediyl as the linker between two pyrenes, phenylpyrenes or phenylethynyl pyrene fluorophores were synthesized (Py-1, Py-2 and Py-3) and their interactions with DNA were studied by UV–vis absorption spectra, fluorescence spectra and viscosity measurements. The probes show red-shifted emission compared with pyrene (up to 20 nm). We found the interaction of these probes with DNA can be either intercalation or groove binding. Ratiometric fluorometry (ratio of the monomer and excimer emission intensity versus concentration of DNA) was achieved with these probes for DNA quantification (with limit of detection, LOD, up to 0.1 μg/mL). We also found that the undesired oxygen sensitivity of the emission intensity of pyrene fluorophore can be greatly suppressed by extending the π-conjugation framework of pyrene (the IAr/Iair value is decreased from 8.10 for pyrene to less than 2.20 for the DNA probes described herein).  相似文献   

18.
Energetics of echinomycin binding to DNA   总被引:5,自引:3,他引:2       下载免费PDF全文
Differential scanning calorimetry and UV thermal denaturation have been used to determine a complete thermodynamic profile for the bis-intercalative interaction of the peptide antibiotic echinomycin with DNA. The new calorimetric data are consistent with all previously published binding data, and afford the most rigorous and direct determination of the binding enthalpy possible. For the association of echinomycin with DNA, we found ΔG° = –7.6 kcal mol–1, ΔH = +3.8 kcal mol–1 and ΔS = +38.9 cal mol–1 K–1 at 20°C. The binding reaction is clearly entropically driven, a hallmark of a process that is predominantly stabilized by hydrophobic interactions, though a deeper analysis of the free energy contributions suggests that direct molecular recognition between echinomycin and DNA, mediated by hydrogen bonding and van der Waals contacts, also plays an important role in stabilizing the complex.  相似文献   

19.
When the benzo(a)pyrene diol epoxide (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) is mixed into a DNA solution, a 10nm red shift in the absorption maximum of BPDE appears at 354nm which is due to a non-covalent intercalation complex. The major reaction pathway at this intercalation site is the hydrolysis of BPDE to its tetraol which is accompanied by a decrease in the absorbance and a shift from 354 to 353nm (the latter is due to intercalated tetraol). The non-covalent binding constants are approximately 8200M?1 for BPDE and 3300M?1 for the tetraol at 25°C, pH 7.0. Covalent adduct formation between BPDE and DNA occurs either at another, external binding site, or after some rearrangement of the intercalated BPDE, since covalent adducts display a 345nm absorption maximum (2nm red shift only).  相似文献   

20.
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号