首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC) and suburothelial myofibroblasts (hsMF). Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL) 4, IL6, IL10, tumor necrosis factor-alpha (TNFα) and transforming growth factor-beta1 (TGFβ1) on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC) and human suburothelial myofibroblasts (hsMF).

Methodology/Principal Findings

HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP). Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC.

Conclusions/Significance

Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that connexin regulation involves genomic and/or post-translational events, and that GJIC in hBSMC and hsMF depend of Cx43 rather than on Cx45.  相似文献   

2.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   

3.

Background

Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells.

Methodology/Principal Findings

Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC.

Conclusions

Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.  相似文献   

4.

Background

In cardiac muscle, the intercalated disk (ID) at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown.

Methods

We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins.

Results

Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1) and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2) were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much) later stages (two years for Nav1.5 and seven years for Cx43, respectively).

Conclusion

Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43) is not uniform since sodium channels localize much earlier than gap junction channels.  相似文献   

5.

Background

Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progression of DN. We examined tight junction dysfunction of GEnCs during early-stage DN and the potential underlying mechanisms. We also examined the effect of simvastatin (3-Hydroxy-3-methylglutaryl CoA reductase inhibitor) on dysfunction of the tight junctions of cultured GEnCs and in db/db mice with early-stage DN.

Methods

We assessed the expression of occludin and ZO-1, two major components of the tight junction complex, in cultured rat GEnCs treated with high glucose and in 12 week-old db/db mice with early-stage DN. We also investigated activation of RhoA/ROCK1 signaling, GEnC permeability, and renal function of the mice.

Results

High glucose suppresses occludin expression and disrupts occludin/ZO-1 translocation in GEnCs. These changes were associated with increased permeability to albumin and activation of RhoA/ROCK1 signaling. Occludin and ZO-1 dysregulation also occurred in the glomeruli of mice with early-stage DN, and these abnormalities were accompanied by albuminuria and activation of RhoA/ROCK1 in isolated glomeruli. Simvastatin prevented high glucose or hyperglycemia-induced dysregulation of occludin and ZO-1 by inhibition of RhoA/ROCK1 signaling in cultured GEnCs and in db/db mice with early-stage DN.

Conclusion

Our results indicate that activation of RhoA/ROCK1 by high glucose disrupts the expression and translocation of occludin/ZO-1 and that simvastatin alleviates occludin/ZO-1 dysregulation and albuminuria by suppressing RhoA/ROCK1 signaling during early-stage DN. These results suggest a potential therapeutic strategy for preventing the onset of albuminuria in early-stage DN.  相似文献   

6.
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1α-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.The intestinal epithelial cell (IEC)3 barrier provides the front line of mucosal host defense in the intestine. The IEC barrier confers anatomic integrity and immunologic protection of the intestinal mucosal surface. Because the IEC barrier constantly faces diverse populations of lumenal microbes and other potential threats, it must exert a highly defined process of continuous discrimination: excluding harmful antigens while allowing host-beneficial substances to permeate (1, 2). Para- and intercellular transit of molecules is modulated by a complex network of closely arranged tight (TJ) and gap junctions (GJ) between juxtaposed IEC. Gap junctional intercellular communication (GJIC) is an essential, but not well understood, mechanism for cellular and tissue homeostasis that coordinates cell-cell passage of ions and small metabolites (<1 kDa). Thus, GJIC regulates cell proliferation, migration, and differentiation (3). GJ channels are formed by hexameric connexins at the plasma membrane. Cx43 is the major connexin and represents a key target in GJIC regulation (4). It is differentially phosphorylated at a dozen or more residues throughout its life cycle (59). Alteration of GJIC caused by changes in Cx43 has been proposed to be involved in the pathophysiology of diverse IEC barrier diseases, including inflammatory bowel diseases, necrotizing enterocolitis, cancer, and enteric infection (1012). However, immune mediators that allow protective GJIC via Cx43 to sustain IEC barrier function during mucosal damage have not yet been identified.Toll-like receptor 2 (TLR2), a member of the TLR family that is constitutively expressed in IEC (1315), recognizes conserved molecular patterns associated with both Gram-negative and -positive bacteria (16). We have previously shown that commensal-mediated TLR2 helps to maintain functional TJ barrier integrity of the intestinal epithelial layer. TLR2 enhances transepithelial resistance of the IEC barrier by apical redistribution of ZO-1 via protein kinase Cα/δ (17). Treatment with the TLR2 ligand PCSK protects ZO-1-associated IEC barrier integrity and decreases intestinal permeability in acute colitis (18). Previous studies in other cell types have demonstrated that the second PDZ domain of ZO-1 interacts with the carboxyl terminus of Cx43 (19, 20). ZO-1 binds to Cx43 preferentially during the G0 phase, enhancing assembly and stabilization of GJIC (21, 22). Like TLR2, Cx43 and ZO-1 reside in caveolin-1-associated lipid raft microdomains (2325). We therefore hypothesized that the binding between ZO-1 and Cx43 may allow TLR2 to control IEC barrier function by GJIC.In this study, we identified a new physiological mechanism of innate immune host defense in the injured intestine. Our findings indicated that Cx43 serves as an important component of the protective innate immune response of the intestinal epithelium. TLR2-induced GJIC via Cx43 appears to control IEC barrier function and restitution during acute and chronic inflammatory damage, enhancing mucosal homeostasis between commensals and host. UC-associated TLR2 mutant results in impaired GJIC by a proteasomal-dependent increase in Cx43 turnover.  相似文献   

7.

Background

Pulmonary hypertension (PH) is characterized by arterial vascular remodelling and alteration in vascular reactivity. Since gap junctions are formed with proteins named connexins (Cx) and contribute to vasoreactivity, we investigated both expression and role of Cx in the pulmonary arterial vasoreactivity in two rat models of PH.

Methods

Intrapulmonary arteries (IPA) were isolated from normoxic rats (N), rats exposed to chronic hypoxia (CH) or treated with monocrotaline (MCT). RT-PCR, Western Blot and immunofluorescent labelling were used to study the Cx expression. The role of Cx in arterial reactivity was assessed by using isometric contraction and specific gap junction blockers. Contractile responses were induced by agonists already known to be involved in PH, namely serotonin, endothelin-1 and phenylephrine.

Results

Cx 37, 40 and 43 were expressed in all rat models and Cx43 was increased in CH rats. In IPA from N rats only, the contraction to serotonin was decreased after treatment with 37-43Gap27, a specific Cx-mimetic peptide blocker of Cx 37 and 43. The contraction to endothelin-1 was unchanged after incubation with 40Gap27 (a specific blocker of Cx 40) or 37-43Gap27 in N, CH and MCT rats. In contrast, the contraction to phenylephrine was decreased by 40Gap27 or 37-43Gap27 in CH and MCT rats. Moreover, the contractile sensitivity to high potassium solutions was increased in CH rats and this hypersensitivity was reversed following 37-43Gap27 incubation.

Conclusion

Altogether, Cx 37, 40 and 43 are differently expressed and involved in the vasoreactivity to various stimuli in IPA from different rat models. These data may help to understand alterations of pulmonary arterial reactivity observed in PH and to improve the development of innovative therapies according to PH aetiology.  相似文献   

8.

Background

Gap junctions (GJs) are the principal membrane structures that conduct electrical impulses between cardiac myocytes while interstitial collagen (IC) can physically separate adjacent myocytes and limit cell-cell communication. Emerging evidence suggests that both GJ and interstitial structural remodeling are linked to cardiac arrhythmia development. However, automated quantitative identification of GJ distribution and IC deposition from microscopic histological images has proven to be challenging. Such quantification is required to improve the understanding of functional consequences of GJ and structural remodeling in cardiac electrophysiology studies.

Methods and Results

Separate approaches were employed for GJ and IC identification in images from histologically stained tissue sections obtained from rabbit and human atria. For GJ identification, we recognized N-Cadherin (N-Cad) as part of the gap junction connexin 43 (Cx43) molecular complex. Because N-Cad anchors Cx43 on intercalated discs (ID) to form functional GJ channels on cell membranes, we computationally dilated N-Cad pixels to create N-Cad units that covered all ID-associated Cx43 pixels on Cx43/N-Cad double immunostained confocal images. This approach allowed segmentation between ID-associated and non-ID-associated Cx43. Additionally, use of N-Cad as a unique internal reference with Z-stack layer-by-layer confocal images potentially limits sample processing related artifacts in Cx43 quantification. For IC quantification, color map thresholding of Masson''s Trichrome blue stained sections allowed straightforward and automated segmentation of collagen from non-collagen pixels. Our results strongly demonstrate that the two novel image-processing approaches can minimize potential overestimation or underestimation of gap junction and structural remodeling in healthy and pathological hearts. The results of using the two novel methods will significantly improve our understanding of the molecular and structural remodeling associated functional changes in cardiac arrhythmia development in aged and diseased hearts.  相似文献   

9.
Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions -3 and -2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43ΔI382) or the last five amino acids (Cx43Δ378-382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43ΔI382 and Cx43Δ378-382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation.  相似文献   

10.
Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions -3 and -2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43deltaI382) or the last five amino acids (Cx43delta378-382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43deltaI382 and Cx43 delta378-382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation.  相似文献   

11.
12.
Gap junction (GJ) intercellular communication (GJIC) is vital to ensure proper cell and tissue function. GJ are multimeric structures composed of proteins called connexins. Modifications on stability or subcellular distribution of connexins have a direct impact on the extent of GJIC. In this study we have investigated the role of the proteasome in regulation of connexin 43 (Cx43) internalization. Although the participation of both the proteasome and lysosome has long been suggested in Cx43 degradation, the molecular mechanisms whereby proteasome contributes to regulate Cx43 internalization and intercellular communication are still unclear. The results presented in this study envision a new mechanism whereby proteasome regulates GJIC by modulating interaction between Cx43 and ZO-1. Immunoprecipitation experiments, in the presence of proteasome inhibitors, together with immunofluorescence data indicate that the proteasome regulates interaction between Cx43 and ZO-1. Overexpression of the PDZ2 domain of ZO-1 and the expression of Cx-43 fused in frame with a V5/HIS tag, suggest that interaction between the two proteins occurs through the PDZ2 domain of ZO-1 and the C-terminus of Cx43. When interaction between Cx43 and ZO-1 is reduced, as in the presence of proteasome inhibitors, Cx43 accumulates, forming large GJ plaques at plasma membrane. Data presented in this article suggest a new pathway whereby alterations in proteasome activity may impact on GJIC as well as on non-junctional communication with extracellular environment, contributing to cell and tissue dysfunction.  相似文献   

13.

Background

Many signaling molecules and pathways that regulate gap junctions (GJs) protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43) hemichannels were activated by cadmium (Cd2+), we tested this hypothesis.

Principal Findings

Incubation of Cx43-transfected LLC-PK1 cells with Cd2+ led to an increased expression of Cx43. This effect of Cd2+ was tightly associated with JNK activation. Inhibition of JNK abolished the elevation of Cx43. Further analysis revealed that the changes of JNK and Cx43 were controlled by GSH. Supplement of a membrane-permeable GSH analogue GSH ethyl ester or GSH precursor N-acetyl-cystein abrogated the effects of Cd2+ on JNK activation and Cx43 expression. Indeed, Cd2+ induced extracellular release of GSH. Blockade of Cx43 hemichannels with heptanol or Cx43 mimetic peptide Gap26 to prevent the efflux of GSH significantly attenuated the Cx43-elevating effects of Cd2+.

Conclusions

Collectively, our results thus indicate that Cd2+-induced upregulation of Cx43 is through activation of nonjunctional Cx43 hemichannels. Our findings thus support the existence of a hemichannel-mediated self-regulation of Cx43 and provide novel insights into the molecular mechanisms of Cx43 expression and function.  相似文献   

14.

Background

During the last few years it has been shown in several laboratories that Celecoxib (Cx), a non-steroidal anti-inflammatory agent (NSAID) normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described.Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR).

Results

Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM), inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF) production and cell proliferation in the tumor.

Conclusion

The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs) and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.  相似文献   

15.

Background

In epilepsy, seizures are generated by abnormal synchronous activity in neurons. In the rat hippocampus (HIP), epileptiform activity has been found to be associated with gap junctions (GJs). GJs are formed by the combination of two hemichannels, each composed of six connexins. At low doses, the convulsive drug 4-aminopyridine (4-AP) produces epileptiform activity without affecting glutamate levels; therefore, GJs could participate in its effect. Based on this argument, in this study, the expression of Cx 32, Cx 36 and Cx 43 protein and mRNA in the HIP of rats treated with 4-AP was evaluated. The evaluation of connexins was carried out by chemifluorescent immunoassay, semiquantitative RT-PCR and immunofluorescence to detect the amount and distribution of connexins and of cellular markers in the HIP and dentate gyrus (DG) of animals treated with NaCl and 4-AP in the right entorhinal cortex. In these animals, convulsive behavior and EEG signals were analyzed.

Results

The animals treated with 4-AP showed convulsive behavior and epileptiform activity 60 min after the administration. A significant increase in the protein expression of Cx 32, Cx 36 and Cx 43 was found in the HIP contralateral and ipsilateral to the site of 4-AP administration. A trend toward an increase in the mRNA of Cx 32 and Cx 43 was also found. An increase in the cellular density of Cx 32 and Cx 43 was found in the right HIP and DG, and an increase in the cellular density of oligodendrocytes in the DG and a decrease in the number of cells marked with NeuN were observed in the left HIP.

Conclusions

Cx 32 and Cx 43 associated with oligodendrocytes and astrocytes had an important role in the first stages of seizures induced by 4-AP, whereas Cx36 localized to neurons could be associated with later stages. Additionally, these results contribute to our understanding of the role of connexins in acute seizures and allow us to direct our efforts to other new anticonvulsant strategies for seizure treatment.  相似文献   

16.

Background and Aims

Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers.

Materials and Methods

Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models.

Results

The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other’s prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively.

Conclusion

Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers.  相似文献   

17.

Background

Intestinal barrier failure may lead to systemic inflammation and distant organ injury in patients following severe injury. Enteric glia cells (EGCs) have been shown to play an important role in maintaining gut barrier integrity through secretion of S-Nitrosoglutathione (GSNO). We have recently shown than Vagal Nerve Stimulation (VNS) increases EGC activation, which was associated with improved gut barrier integrity. Thus, we sought to further study the mechanism by which EGCs prevent intestinal barrier breakdown utilizing an in vitro model. We postulated that EGCs, through the secretion of GSNO, would improve intestinal barrier function through improved expression and localization of intestinal tight junction proteins.

Methods

Epithelial cells were co-cultured with EGCs or incubated with GSNO and exposed to Cytomix (TNF-α, INF-γ, IL-1β) for 24 hours. Barrier function was assessed by permeability to 4kDa FITC-Dextran. Changes in tight junction proteins ZO-1, occludin, and phospho-MLC (P-MLC) were assessed by immunohistochemistry and immunoblot.

Key Results

Co-culture of Cytomix-stimulated epithelial monolayers with EGCs prevented increases in permeability and improved expression and localization of occludin, ZO-1, and P-MLC. Further, treatment of epithelial monolayers with GSNO also prevented Cytomix-induced increases in permeability and exhibited a similar improvement in expression and localization of occludin, ZO-1, and P-MLC.

Conclusions & Inferences

The addition of EGCs, or their secreted mediator GSNO, prevents epithelial barrier failure after injury and improved expression of tight junction proteins. Thus, therapies that increase EGC activation, such as VNS, may be a novel strategy to limit barrier failure in patients following severe injury.  相似文献   

18.

Introduction

The molecular mechanism underlying mitochondrial BAK activation during apoptosis remains highly controversial. Two seemingly conflicting models have been proposed. In one, BAK requires so-called activating BH3 only proteins (aBH3) to initiate its conformation change. In the other, displacement from inhibitory pro-survival BCL-2 proteins (PBPs) and monomerization of BAK by PBP selective dissociator BH3-only proteins (dBH3) is sufficient.

Methodology/Principal Findings

To better understand the kinetic implications of these conflicting but highly evidence-based models, we have conducted a deterministic, dynamical systems analysis to explore the kinetics underlying the first step of BAK activation, as a non-linear reaction system. We show that dBH3 induced BAK activation is efficient, even in the absence of aBH3s, provided constitutive interaction of PBPs with open conformation BAK occurs in an adenoviral E1B 19K-like manner. The pattern of PBP expression robustly predicts the efficacy of dBH3s.

Conclusion

Our findings accommodate the prevailing BAK activation models as potentially coexisting mechanisms capable of initiating BAK activation, and supports a model based approach for predicting resistance to therapeutically relevant small molecule BH3 mimetics.  相似文献   

19.

Purpose

Macrophages have been shown to play a critical role in the wound healing process. In the present study, the role of macrophages in wound healing after autologous corneal transplantation was investigated by depleting local infiltrated macrophages.

Methods

Autologous corneal transplantation model was used to induce wound repair in Balb/c mice. Macrophages were depleted by sub-conjunctival injections of clodronate-containing liposomes (Cl2MDP-LIP). The presence of CD11b+ F4/80+ macrophages, α-smooth muscle actin+ (α-SMA+) myofibroblasts, CD31+ vascular endothelial cells and NG2 + pericytes was examined by immunohistochemical and corneal whole-mount staining 14 days after penetrating keratoplasty. Peritoneal macrophages were isolated from Balb/c mice and transfused into conjunctiva to examine the recovery role of macrophages depletion on wound healing after autologous corneal transplantation.

Results

Sub-conjunctival Cl2MDP-LIP injection significantly depleted the corneal resident phagocytes and infiltrated macrophages into corneal stroma. Compared with the mice injected with PBS-liposome, the Cl2MDP-LIP-injected mice showed few inflammatory cells, irregularly distributed extracellular matrix, ingrowth of corneal epithelium into stroma, and even the detachment of donor cornea from recipient. Moreover, the number of macrophages, myofibroblasts, endothelial cells and pericytes was also decreased in the junction area between the donor and recipient cornea in macrophage-depleted mice. Peritoneal macrophages transfusion recovered the defect of corneal wound healing caused by macrophages depletion.

Conclusions

Macrophage depletion significantly impairs wound healing after autologous corneal transplantation through at least partially impacting on angiogenesis and wound closure.  相似文献   

20.

Background

Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC)/smooth muscle cells (SMC) crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS) in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone.

Methodology/Principal Findings

In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx) 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 (37,43Gap27) (1) reduced contractile and calcium responses to serotonin (5-HT) simultaneously recorded in pulmonary arteries and (2) abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H2O2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries.

Conclusions/Significance

These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号