首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic kidney disease (CKD) is strongly associated with increased cardiovascular risk. Impaired endothelial function, a key initiating step in the pathogenesis of cardiovascular disease, has been reported in patients with CKD, but the mechanisms responsible for endothelial dysfunction in CKD remain elusive. Emerging evidence reveals that trimethylamine-N-oxide (TMAO), a gut microbiota-generated metabolite, is involved in the pathogenesis of many cardiovascular diseases. Circulating TMAO is elevated in CKD. Here we tested the hypothesis that elevated TMAO plays a contributory role in the pathogenesis of endothelial dysfunction in CKD. Rats underwent 5/6 nephrectomy to induce CKD or sham operation, and were treated with 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) or vehicle. Eight weeks after nephrectomy and DMB treatment, circulating TMAO levels were markedly elevated in CKD-vehicle rats compared with sham-vehicle rats, but were reduced in CKD-DMB rats. Acetylcholine-induced endothelium-dependent vasodilation was impaired in CKD-vehicle rats compared with sham-vehicle rats as indicated by reduced maximal relaxation (Emax) and decreased area under the curve (AUC). Emax and AUC were both normalized in CKD-DMB rats. No difference in sodium nitroprusside-induced endothelial-independent vasodilation was observed across groups. Molecular studies revealed that endothelial nitric-oxide synthase activity was decreased, while superoxide production and proinflammatory cytokine expression were increased in the aorta of CKD-vehicle rats compared with sham-vehicle rats. Of note, the abnormalities in above molecular parameters were completely restored in CKD-DMB rats. These results suggest that CKD elevates circulating TMAO levels, which may reduce eNOS-derived NO production by increasing vascular oxidative stress and inflammation, contributing to CKD-associated endothelial dysfunction and cardiovascular disease.  相似文献   

2.
慢性肾脏病-矿物质和骨代谢紊乱(CKD-MBD)所导致的血管钙化是增加CKD患者发生心血管事件的独立危险因素。钙磷平衡的破坏、氧化应激的增加、钙化抑制剂的丢失、RANKL表达的增加等均被认为与CKD患者血管钙化的发生有关。此外,受损的骨质能够进一步扰乱血清钙磷和甲状旁腺激素水平,从而促进CKD患者发生血管钙化。磷结合剂和双膦酸盐类药物是目前治疗CKD-MBD所致的血管钙化是治疗的常用方法,可以改善骨质疏松以及血管钙化。本文就近年来CKD-MBD血管钙化发生机制的研究进展进行了综述。  相似文献   

3.
We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, increases arterial SIRT1 activity and reverses age‐associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium‐dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)‐mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age‐associated impairment in EDD was restored in OC by the superoxide () scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s?1 vs. 337 ± 3 cm s?1) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen‐I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFκB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO‐mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s?1) and EM (3694 ± 315 kPa), normalized production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen‐I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD+ threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age‐related arterial dysfunction by decreasing oxidative stress.  相似文献   

4.
Hypovitaminosis D is highly prevalent in chronic kidney disease (CKD). Recently, vitamin D has sparked widespread interest because of its potential favorable benefits on cardiovascular disease (CVD). Evidence from clinical studies and animal models supports the existence of biphasic cardiovascular effects of vitamin D, in which lower doses suppress CVD and higher doses stimulate CVD. However, the mechanism for the different effects remains unclear. Fibroblast growth factor-23 (FGF-23) is a recently identified member of the FGF family, and thought to be actively involved in renal phosphate and vitamin D homeostasis. More specifically, Vitamin D stimulates FGF-23 secretion and is inhibited by increased FGF-23. Given this background, we hypothesize that FGF-23 may provide a unique tool to explain the biphasic cardiovascular effects of vitamin D in CKD. The data presented in this review support the hypothesis that FGF-23 may be linked with the high cardiovascular risk in CKD through accelerating the onset of vascular calcification, secondary hyperparathyroidism, left ventricular hypertrophy and endothelial dysfunction. Therefore, modulation of FGF-23 may become a potential therapeutic target to lowing cardiovascular risk in CKD. Several clinical interventions, including decreased phosphate intake, phosphate binders, cinacalcet plus concurrent low-dose vitamin D, C-terminal tail of FGF-23 and renal transplantation, have been employed to manipulate FGF-23.  相似文献   

5.
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.  相似文献   

6.
Patients with chronic kidney disease (CKD) have a substantially increased risk of cardiovascular disease (CVD) compared with the general population. The high prevalence of established traditional risk factors for atherosclerosis (diabetes, hypertension, dyslipidemia) in these patients undoubtedly contributes to the accelerated rate of vascular disease. In addition, several hypotheses have emerged to explain the high prevalence of CVD in patients with chronic renal failure. Growing evidence has been gathered over the last 15 years regarding the role of uremia-related risk factors such as inflammation and oxidant stress in the pathogenesis of atherosclerosis in subjects with renal failure. This paper will review current knowledge regarding the potential role of these non-traditional or uremia-related risk factors for atherosclerosis with special emphasis on prevalence, cardiac risk, and management in patients with CKD.  相似文献   

7.
Cardiovascular disease in patients with diabetic nephropathy   总被引:1,自引:0,他引:1  
Diabetic nephropathy, which represents a major form of chronic kidney disease (CKD), is a leading cause of end-stage renal disease worldwide, and is also a risk factor for cardiovascular disease (CVD). Patients with diabetes and CKD have poorer outcomes after myocardial infarction. The underlying pathogenic mechanism that links diabetic nephropathy to a high risk of CVD remains unclear. In addition to traditional risk factors, including hypertension, hyperglycemia, and dyslipidemia, identification of novel modifiable risk factors is important in preventing CVD in people with diabetes. Inflammation/oxidative stress are known to be associated with an increased risk for CVD in patients with diabetic nephropathy. Moreover, homocysteine, advanced glycation end products, asymmetric dimethylarginine, and anemia may play a role in the development and progression of atherosclerosis in patients with diabetic nephropathy. This review summarizes the epidemiologic evidence, molecular mechanisms responsible for the increased risk for CVD in patients with diabetic nephropathy, and therapeutic intervention for diabetic nephropathy as evidenced by large-scale clinical trials.  相似文献   

8.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

9.
《Free radical research》2013,47(5):346-356
Abstract

Oxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients.

In this review, we highlight the role of oxidative stress in cardiovascular and renal disease.  相似文献   

10.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

11.
Yung LM  Wong WT  Tian XY  Leung FP  Yung LH  Chen ZY  Yao X  Lau CW  Huang Y 《PloS one》2011,6(3):e17437

Background

Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats.

Methodology/Principal Findings

Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser1177 in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan.

Conclusions/Significance

The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states.  相似文献   

12.
To determine if short‐term calorie restriction reverses vascular endothelial dysfunction in old mice, old (O, n = 30) and young (Y, n = 10) male B6D2F1 mice were fed ad libitum (AL) or calorie restricted (CR, approximately 30%) for 8 weeks. Ex vivo carotid artery endothelium‐dependent dilation (EDD) was impaired in old ad libitum (OAL) vs. young ad libitum (YAL) (74 ± 5 vs. 95 ± 2% of maximum dilation, P < 0.05), whereas old calorie‐restricted (OCR) and YCR did not differ (96 ± 1 vs. 94 ± 3%). Impaired EDD in OAL was mediated by reduced nitric oxide (NO) bioavailability associated with decreased endothelial NO synthase expression (aorta) (P < 0.05), both of which were restored in OCR. Nitrotyrosine, a cellular marker of oxidant modification, was markedly elevated in OAL (P < 0.05), whereas OCR was similar to Y. Aortic superoxide production was 150% greater in OAL vs. YAL (P < 0.05), but normalized in OCR, and TEMPOL, a superoxide dismutase (SOD) mimetic that restored EDD in OAL (to 97 ± 2%), had no effect in Y or OCR. OAL had increased expression and activity of the oxidant enzyme, NADPH oxidase, and its inhibition (apocynin) improved EDD, whereas NADPH oxidase in OCR was similar to Y. Manganese SOD activity and sirtuin1 expression were reduced in OAL (P < 0.05), but restored to Y in OCR. Inflammatory cytokines were greater in OAL vs. YAL (P < 0.05), but unaffected by CR. Carotid artery endothelium‐independent dilation did not differ among groups. Short‐term CR initiated in old age reverses age‐associated vascular endothelial dysfunction by restoring NO bioavailability, reducing oxidative stress (via reduced NADPH oxidase–mediated superoxide production and stimulation of anti‐oxidant enzyme activity), and upregulation of sirtuin‐1.  相似文献   

13.
The cardiometabolic syndrome (CMS), with its increased risk for cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD), and chronic kidney disease (CKD), has become a growing worldwide health problem. Insulin resistance is a key factor for the development of the CMS and is strongly related to obesity, hyperlipidemia, hypertension, type 2 diabetes mellitus (T2DM), CKD, and NAFLD. Insulin resistance in skeletal muscle is particularly important since it is normally responsible for more than 75% of all insulin-mediated glucose disposal. However, the molecular mechanisms responsible for skeletal muscle insulin resistance remain poorly defined. Accumulating evidence indicates that low-grade chronic inflammation and oxidative stress play fundamental roles in the development of insulin resistance, and inflammatory cytokines likely contribute to the link between inflammation, oxidative stress, and skeletal muscle insulin resistance. Understanding the mechanisms by which skeletal muscle tissue develops resistance to insulin will provide attractive targets for interventions, which may ultimately curb this serious problem. This review is focused on the effects of inflammatory cytokines and oxidative stress on insulin signaling in skeletal muscle and consequent development of insulin resistance.  相似文献   

14.
15.

Background

Several studies have shown that activation of the renin-angiotensin system may lead to hypertension, a major risk factor for the development of chronic kidney disease (CKD). The existing hypertension-induced CDK mouse models are quite fast and consequently away from the human pathology. Thus, there is an urgent need for a mouse model that can be used to delineate the pathogenic process leading to progressive renal disease. The objective of this study was dual: to investigate whether mice overexpressing renin could mimic the kinetics and the physiopathological characteristics of hypertension-induced renal disease and to identify cellular and/or molecular events characterizing the different steps of the progression of CKD.

Methodology/Principal Findings

We used a novel transgenic strain, the RenTg mice harboring a genetically clamped renin transgene. At 3 months, heterozygous mice are hypertensive and slightly albuminuric. The expression of adhesion markers such as vascular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 are increased in the renal vasculature indicating initiation of endothelial dysfunction. At 5 months, perivascular and periglomerular infiltrations of macrophages are observed. These early renal vascular events are followed at 8 months by leukocyte invasion, decreased expression of nephrin, increased expression of KIM-1, a typical protein of tubular cell stress, and of several pro-fibrotic agents of the TGFβ family. At 12 months, mice display characteristic structural alterations of hypertensive renal disease such as glomerular ischemia, glomerulo- and nephroangio-sclerosis, mesangial expansion and tubular dilation.

Conclusions/Significance

The RenTg strain develops CKD progressively. In this model, endothelial dysfunction is an early event preceding the structural and fibrotic alterations which ultimately lead to the development of CKD. This model can provide new insights into the mechanisms of chronic renal failure and help to identify new targets for arresting and/or reversing the development of the disease.  相似文献   

16.
We tested the hypothesis that short-term nitrite therapy reverses vascular endothelial dysfunction and large elastic artery stiffening with aging, and reduces arterial oxidative stress and inflammation. Nitrite concentrations were lower (P < 0.05) in arteries, heart, and plasma of old (26-28 month) male C57BL6 control mice, and 3 weeks of sodium nitrite (50 mg L(-1) in drinking water) restored nitrite levels to or above young (4-6 month) controls. Isolated carotid arteries of old control mice had lower acetylcholine (ACh)-induced endothelium-dependent dilation (EDD) (71.7 ± 6.1% vs. 93.0 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (P < 0.05 vs. young), and sodium nitrite restored EDD (95.5 ± 1.6%) by increasing NO bioavailability. 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide dismutase (SOD) mimetic, apocynin, a nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, and sepiapterin (exogenous tetrahydrobiopterin) each restored EDD to ACh in old control, but had no effect in old nitrite-supplemented mice. Old control mice had increased aortic pulse wave velocity (478 ± 16 vs. 332 ± 12 AU, P < 0.05 vs. young), which nitrite supplementation lowered (384 ± 27 AU). Nitrotyrosine, superoxide production, and expression of NADPH oxidase were ~100-300% greater and SOD activity was ~50% lower in old control mice (all P < 0.05 vs. young), but were ameliorated by sodium nitrite treatment. Inflammatory cytokines were markedly increased in old control mice (P < 0.05), but reduced to levels of young controls with nitrite supplementation. Short-term nitrite therapy reverses age-associated vascular endothelial dysfunction, large elastic artery stiffness, oxidative stress, and inflammation. Sodium nitrite may be a novel therapy for treating arterial aging in humans.  相似文献   

17.
We tested the hypothesis that reductions in vascular endothelial function (endothelium-dependent dilation, EDD) with age are related to increases in sympathetic activity. Among 314 healthy men and women, age was inversely related to brachial artery flow-mediated dilation (FMD) (r = -0.30, P < 0.001), a measure of EDD, and positively related to plasma norepinephrine concentrations (PNE), a marker of sympathetic activity (r = 0.49, P < 0.001). Brachial FMD was inversely related to PNE in all subjects (r = -0.25, P < 0.001) and in men (n = 187, r = -0.17, P = 0.02) and women (n = 127, r = -0.37, P < 0.001) separately. After controlling for PNE (multiple regression analysis), brachial FMD remained significantly related to age in all subjects (r = -0.20, P < 0.001) and in men (r = -0.23, P < 0.01), but not women (r = -0.16, P = 0.06). Consistent with this, brachial FMD remained significantly related to PNE when controlling for age (r = -0.24, P < 0.01) and menopause status (r = -0.24, P < 0.01) in women. Indeed, PNE was the strongest independent correlate of brachial FMD in women after controlling for conventional cardiovascular disease risk factors (r = -0.22, P = 0.01). This relation persisted in a subset of women (n = 113) after further accounting for the effects of plasma oxidized low-density lipoprotein (P < 0.05), a circulating marker of oxidative stress. Endothelium-independent dilation was not related to age in either men or women (P > 0.05). These results provide the first evidence that EDD is inversely related to sympathetic activity, as assessed by PNE, among healthy adults varying in age. In particular, our findings suggest that sympathetic nervous system activity may be a key factor involved in the modulation of vascular endothelial function with aging in women.  相似文献   

18.

Introduction  

In this study we aimed to investigate whether there are indications of premature atherosclerosis, as measured by endothelial dependent flow-mediated dilation (ED-FMD) and intima media thickness (IMT), in patients with very early RA, and to analyze its relation to biomarkers of endothelial dysfunction, taking inflammation and traditional cardiovascular disease (CVD) risk factors into account.  相似文献   

19.
Xu J  Wang S  Zhang M  Wang Q  Asfa S  Zou MH 《PloS one》2012,7(1):e29649
Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO(-)) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets-fed LDL receptor knockout (LDLr(-/-)) mice. The elevated 26S proteasome activities were accompanied by ONOO(-)-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO(-)-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.  相似文献   

20.
Cardiovascular complications caused by an accelerated atherosclerotic disease consist the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). These patients present multiple atherosclerotic risk factors, considered traditional, as well as nontraditional risk factors such as inflammation and oxidative stress. These complications are also seen in obesity, in which endothelial dysfunction is one of the early stages of atherosclerosis. The impact of trace metal deficiencies on this process is not well studied in patients with CKD and in obese people, although the influence of trace elements depletion, particularly zinc (Zn), may have significant clinical implications. This brief review describes the functions of Zn as well as the respective role of this trace element in atherosclerosis processes, with a particular emphasis on obese patients with chronic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号