共查询到20条相似文献,搜索用时 0 毫秒
1.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy 总被引:1,自引:0,他引:1
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations. 相似文献
2.
The last decade has seen rapid development in single molecule manipulation of RNA and DNA. Measuring the response force for a particular manipulation has allowed the free energies of various nucleic acid structures and configurations to be determined. Optical tweezers represent a class of single molecule experiments that allows the energies and structural dynamics of DNA to be probed up to and beyond the transition from the double helix to its melted single strands. These experiments are capable of high force resolution over a wide dynamic range. Additionally, these investigations may be compared with results obtained when the nucleic acids are in the presence of proteins or other binding ligands. These ligands may bind into the major or minor groove of the double helix, intercalate between bases or associate with an already melted single strand of DNA. By varying solution conditions and the pulling dynamics, energetic and dynamic information may be deduced about the mechanisms of binding to nucleic acids, providing insight into the function of proteins and the utility of drug treatments. 相似文献
3.
Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 103) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments. 相似文献
4.
Bockelmann U Thomen P Essevaz-Roulet B Viasnoff V Heslot F 《Biophysical journal》2002,82(3):1537-1553
Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system. 相似文献
5.
Optical tweezers have broad applications in studies of structures and processes in molecular and cellular biophysics. Use of optical tweezers for quantitative molecular-scale measurement requires careful calibration in physical units. Here we show that DNA molecules may be used as metrology standards for force and length measurements. Analysis of DNA molecules of two specific lengths allows simultaneous determination of all essential measurement parameters. We validate this biological-calibration method experimentally and with simulated data, and show that precisions in determining length scale factor ( approximately 0.2%), length offset ( approximately 0.03%), force scale factor ( approximately 2%), and compliance of the traps ( approximately 3%) are limited only by current measurement variation, much of which arises from polydispersity of the microspheres ( approximately 2%). We find this procedure to be simpler and more convenient than previous methods, and suggest that it provides an easily replicated standard that can insure uniformity of measurements made in different laboratories. 相似文献
6.
Heikki Ojala Gabija Ziedaite Anders E. Wallin Dennis H. Bamford Edward Hæggström 《European biophysics journal : EBJ》2014,43(2-3):71-79
The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force–extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force–extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations. 相似文献
7.
Although magnetic tweezers have many unique advantages in terms of specificity, throughput, and force stability, this tool has had limited application on short tethers because accurate measurement of force has been difficult for short tethers under large tension. Here, we report a method that allows us to apply magnetic tweezers to stretch short biomolecules with accurate force calibration over a wide range of up to 100 pN. We demonstrate the use of the method by overstretching of a short DNA and unfolding/refolding a protein of filamin A immunoglobulin domains 1–8. Other potential applications of this method are also discussed. 相似文献
8.
Kanagavel Deepankumar Nadarajan Saravanan Prabhu June-Hyung Kim Hyungdon Yun 《Biotechnology and Bioprocess Engineering》2017,22(3):248-255
In this study, we demonstrate the application of multiple functional properties of proteins generated through coupling of residue-specific and site-specific incorporation method. With green fluorescent protein (GFP) as a model protein, we constructed multifunctional GFP through sitespecific incorporation of L-3,4-dihydroxyphenylalanine (DOPA) and residue-specific incorporation of (2S, 4S)-4- fluoroproline (4S-FP) or L-homopropargylglycine (hpg). Fluorescence analysis revealed a conjugation efficiency of approximately 20% for conjugation of DOPA-containing variants GFPdopa, GFPdp[4S-FP], and GFPdphpg onto chitosan. While incorporation of 4S-FP improved protein folding and stability, hpg incorporation into GFP allowed conjugation with fluorescent dye/polyethylene glycol (PEG). In addition, the modification of GFPhpg and GFPdphpg with PEG through Cu(I)-catalyzed click reaction increased protein thermal stability by about two-fold of the wild-type GFP. 相似文献
9.
Tethers are nanocylinders of lipid bilayer membrane, arising in situations ranging from micromanipulation experiments on synthetic vesicles to the formation of dynamic tubular networks in the Golgi apparatus. Relying on the extensive theoretical and experimental works aimed to understand the physics of individual tethers formation, we addressed the problem of the interaction between two nanotubes. By using a combination of micropipette manipulation and optical tweezers, we quantitatively studied the process of coalescence that occurred when the separation distance between both vesicle-tether junctions became smaller than a threshold length. Our experiments, which were supported by an original theoretical analysis, demonstrated that the measurements of the tether force and angle between tethers at coalescence directly yield the bending rigidity, kappa, and the membrane tension, sigma, of the vesicles. Contrary to other methods used to probe the bending rigidity of vesicles, the proposed approach permits a direct measurement of kappa without requiring any control of the membrane tension. Finally, after validation of the method and proposal of possible applications, we experimentally investigated the dynamics of the coalescence process. 相似文献
10.
Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. 相似文献
11.
Sanford H. Leuba Travis B. Wheeler Chao-Min Cheng Philip R. LeDuc Mónica Fernández-Sierra Edwin Quiñones 《Methods (San Diego, Calif.)》2009,47(3):214-222
Here we describe the use of magnetic tweezers and or microfluidics to manipulate single DNA molecules. We describe experiment which employ magnetic tweezers coupled to an inverted microscope as well as the use of a magnetic tweezers setup with an upright microscope. Using a chamber prepared via soft lithography, we also describe a microfluidic device for the manipulation of individual DNA molecules. Finally, we present some past successful examples of using these approaches to elucidate unique information about protein–nucleic acid interactions. 相似文献
12.
Xi Long Joseph W. Parks Clive R. Bagshaw Michael D. Stone 《Nucleic acids research》2013,41(4):2746-2755
Single-molecule techniques facilitate analysis of mechanical transitions within nucleic acids and proteins. Here, we describe an integrated fluorescence and magnetic tweezers instrument that permits detection of nanometer-scale DNA structural rearrangements together with the application of a wide range of stretching forces to individual DNA molecules. We have analyzed the force-dependent equilibrium and rate constants for telomere DNA G-quadruplex (GQ) folding and unfolding, and have determined the location of the transition state barrier along the well-defined DNA-stretching reaction coordinate. Our results reveal the mechanical unfolding pathway of the telomere DNA GQ is characterized by a short distance (<1 nm) to the transition state for the unfolding reaction. This mechanical unfolding response reflects a critical contribution of long-range interactions to the global stability of the GQ fold, and suggests that telomere-associated proteins need only disrupt a few base pairs to destabilize GQ structures. Comparison of the GQ unfolded state with a single-stranded polyT DNA revealed the unfolded GQ exhibits a compacted non-native conformation reminiscent of the protein molten globule. We expect the capacity to interrogate macromolecular structural transitions with high spatial resolution under conditions of low forces will have broad application in analyses of nucleic acid and protein folding. 相似文献
13.
Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis 总被引:5,自引:0,他引:5
The biophysical properties of the interaction between fibronectin and its membrane receptor were inferred from adhesion tests
on living cells. Individual fibroblasts were maintained on fibronectin-coated glass for short time periods (1–16 s) using
optical tweezers. After contact, the trap was removed quickly, leading to either adhesion or detachment of the fibroblast.
Through a stochastic analysis of bond kinetics, we derived equations of adhesion probability versus time, which fit the experimental
data well and were used to compute association and dissociation rates (k
+=0.3–1.4 s−1 and k
off=0.05–0.25 s−1, respectively). The bond distribution is binomial, with an average bond number ≤10 at these time scales. Increasing the fibronectin
density (100–3000 molecules/μm2) raised k
+ in a diffusion-dependent manner, leaving k
off relatively unchanged. Increasing the temperature (23–37 °C) raised both k
+ and k
off, allowing calculation of the activation energy of the chemical reaction (around 20 k
B
T). Increasing the compressive force on the cell during contact (up to 60 pN) raised k
+ in a logarithmic manner, probably through an increase in the contact area, whereas k
off was unaffected. Finally, by varying the pulling force to detach the cell, we could distinguish between two adhesive regimes,
one corresponding to one bond, the other to at least two bonds. This transition occurred at a force around 20 pN, interpreted
as the strength of a single bond.
Received: 2 November 1999 / Revised version: 6 March 2000 / Accepted: 19 April 2000 相似文献
14.
We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = approximately 40 nm at low forces up to C = approximately 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented. 相似文献
15.
16.
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience. 相似文献
17.
In an earlier report on fungal protease (F-prot)-fatty acid biocomposite film formation [Gole et al. Anal. Chem. 2000, 72, 4301], it was observed that the biocatalytic activity of the immobilized enzyme was comparable to that of the free enzyme in solution. However, a somewhat negative aspect of the protocol was the steady loss in activity during reuse and storage of the biocomposite film. In this paper, we address the latter issues and demonstrate successful attempts toward the realization of efficient biocomposite films with enhanced biological activity, temporal stability, and excellent reusability. The improved performance of the F-prot-stearic acid biocomposite is accomplished by preordering the fatty acid film by incorporation of Pb(2+) ions into the lipid matrix prior to enzyme immobilization. The lead cation induces lamellar ordering in the lipid film and thus facilitates diffusion of the F-prot molecules into the lipid matrix and accessibility of the substrate molecules (hemoglobin, Hb) to the entrapped F-prot enzyme molecules. The preordering consequently leads to effective control of the "mass transport" problem and might be responsible for the enhanced biological activity ( approximately 36%) of the enzyme molecules in the biocomposite in comparison with the free enzyme in solution, as well the excellent reusability of the composite film. In addition to biocatalytic activity measurements, the formation and characterization of the F-prot-lead stearate biocomposite films was done by quartz crystal microgravimetry and X-ray diffraction. 相似文献
18.
Buck HM 《Nucleosides, nucleotides & nucleic acids》2005,24(5-7):451-454
Neutralization of charge of the phosphodiester groups in DNA and the significance for transfer of genetic information will be demonstrated. Theoretical models based on proton shielding are elaborated with ab initio level calculations for a Watson-Crick-type dimer. These results are compared with molecular mechanics studies for duplexes of a hexamer with Rp and Sp phosphate-methylated backbones. 相似文献
19.
It was previously shown that the Cro repressor from phage lambda, which is a dimer, can be converted into a stable monomer by a five-amino acid insertion. Phe58 is the key residue involved in this transition, switching from interactions which stabilize the dimer to those which stabilize the monomer. Structural studies, however, suggested that Phe58 did not penetrate into the core of the monomer as well as it did into the native dimer. This was strongly supported by the finding that certain core-repacking mutations, including in particular, Phe58-->Trp, increased the stability of the monomer. Unexpectedly, the same substitution also increased the stability of the native dimer. At the same time it decreased the affinity of the dimer for operator DNA. Here we describe the crystal structures of the Cro F58W mutant, both as the monomer and as the dimer. The F58W monomer crystallized in a form different from that of the original monomer. In contrast to that structure, which resembled the DNA-bound form of Cro, the F58W monomer is closer in structure to wild-type (i.e. non-bound) Cro. The F58W dimer also crystallizes in a form different from the native dimer but has a remarkably similar overall structure which tends to confirm the large changes in conformation of Cro on binding DNA. Introduction of Trp58 perturbs the position occupied by the side-chain of Arg38, a DNA-contact residue, providing a structural explanation for the reduction in DNA-binding affinity.The improved thermal stability is seen to be due to the enhanced solvent transfer free energy of Trp58 relative to Phe58, supplemented in the dimer structure, although not the monomer, by a reduction in volume of internal cavities. 相似文献