首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weilan Ye 《The EMBO journal》2014,33(8):786-787
Since metastatic lesions of solid tumors are the major cause of mortality in cancer patients, understanding the molecular mechanisms of metastasis is of paramount importance. Although extensive knowledge has been accumulated regarding the early steps in metastasis—starting with the departure of cancer cells from their primary sites, to their transit through the hematogenous and/or lymphatic systems, and ending with their entrance into the parenchyma of distant organs—it is difficult if not impossible to translate such knowledge into medicine due to the challenge of identifying patients with only primary tumors but otherwise pristine organs. In other words, autopsy studies indicate that a large proportion of patients already harbor dormant, undetectable micrometastases at the time of cancer diagnosis (Hensel et al, 2013 ). Accordingly, stopping tumor cell dissemination is too late for these patients. Therefore, understanding the survival and outgrowth of micrometastases may hold greater promise to combat metastatic disease.  相似文献   

2.
Malignant melanoma is a cancer of the skin arising in the melanocytes. We present a mathematical model of melanoma invasion into healthy tissue with an immune response. We use this model as a framework with which to investigate primary tumor invasion and treatment by surgical excision. We observe that the presence of immune cells can destroy tumors, hold them to minimal expansion, or, through the production of angiogenic factors, induce tumorigenic expansion. We also find that the tumor–immune system dynamic is critically important in determining the likelihood and extent of tumor regrowth following resection. We find that small metastatic lesions distal to the primary tumor mass can be held to a minimal size via the immune interaction with the larger primary tumor. Numerical experiments further suggest that metastatic disease is optimally suppressed by immune activation when the primary tumor is moderately, rather than minimally, metastatic. Furthermore, satellite lesions can become aggressively tumorigenic upon removal of the primary tumor and its associated immune tissue. This can lead to recurrence where total cancer mass increases more quickly than in primary tumor invasion, representing a clinically more dangerous disease state. These results are in line with clinical case studies involving resection of a primary melanoma followed by recurrence in local metastases.  相似文献   

3.
K‐RAS and BRAF gene mutations are mandatory to set anti‐EGFR therapy in metastatic colorectal cancer (mCRC) patients. Due to the relationship of these mutations with tumor epigenotype, we hypothesized the potential role of oncosuppressor methylation of genes involved in K‐RAS/BRAF pathway (CDKN2A, RASSF1A, and RARbeta suppressor genes) in inhibiting EGFR signaling cascade. Primary tumor and synchronous liver metastatic tissues of 75 mCRC patients were characterized for promoter methylation by QMSP and for K‐RAS and BRAF mutations. RARbeta, RASSF1A, and CDKN2A genes were methylated in 82%, 35%, and 26% of primary tumors, respectively. RASSF1A resulted significantly more frequently methylated in liver metastasis than in primary site (P = 0.015), while RARbeta was significantly lower methylated in distant metastasis (P = 1.2 × 10?6). As regards methylation content, RASSF1A methylation status was significantly higher in liver metastasis with respect to primary tumor (P = 0.000) underlying the role of this gene in liver metastatic progression. In our series K‐RAS and BRAF were mutated in 39% and 4% of cases, respectively. Methylation frequencies seemed to be unrelated to gene mutations; on the other hand, RASSF1A mean content methylation resulted significantly higher in liver than in primary tumor (288.78 vs. 56.23, respectively, P = 0.05) only in K‐RAS wild‐type cases sustaining a specific role of this gene in metastatic site thus supporting its function in strengthening the apoptotic role of K‐RAS. These evidences held the role of oncosuppressor methylation in both colon tumorigenesis and progression and suggested that epigenetic events should be taken into account when biological therapies in mCRC patients have to be set. J. Cell. Physiol. 226: 1934–1939, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Cancer, the most devastating chronic disease affecting humankind, is treated primarily by surgery, chemotherapy, and radiation therapy. Surgery and radiotherapy are mainly used for debulking the primary tumor, while chemotherapy is the most efficient anti-metastatic treatment. To control better metastatic cancer, the host immune system should be stimulated. Yet, successful specific stimulation of the immune system against tumors was seldom achieved even in antigenic tumors. Our working hypothesis is that aggressive in situ tumor ablation can release tumor antigens and danger signals, which will enhance anti-tumor T cell responses resulting in the destruction of residual malignant cells in primary tumors and distant metastases. We developed two efficient in situ ablation treatments for solid cancer, which can be used to destroy the primary tumors and stimulate anti-tumor immune responses. The first treatment, electrochemical ablation, is applied through intratumoral electrodes, which deliver unipolar-pulsed electric currents. The second treatment, diffusing alpha-emitters radiation therapy (DaRT), is based on intratumoral 224Ra-loaded wire(s) that release by recoil its daughter atoms. These short-lived alpha-emitting atoms spread in the tumor and spray it with lethal alpha particles. It was confirmed that these treatments effectively destroy various malignant animal and human primary solid tumors. As a consequence of such tumor ablation, tumor-derived antigenic material was released and provoked systemic T cell-dependent anti-tumor immunological reactions. These reactions conferred protection against a secondary tumor challenge and destroyed remaining malignant cells in the primary tumor as well as in distant metastases. Such anti-tumor immune responses could be further amplified by the immune adjuvant, CpG. Electrochemical ablation or DaRT together with chemotherapy and immunostimulatory agents can serve as treatment protocols for solid metastatic tumors and can be applied instead of or in combination with surgery.  相似文献   

5.
《Biomarkers》2013,18(6):502-508
Abstract

Context: Quantification of circulating microRNAs (miRNAs) has recently become feasible and reliable, with most efforts focusing on miRNAs overexpressed by cancer cells.

Objective: Identification of a characteristic circulating miRNAs profile in melanoma patients.

Methods: We conducted a pilot study comprised of unbiased qPCR comparison of serum miRNA profiles between metastatic melanoma patients and healthy donors.

Results: Loss of two normal serum-miRNAs, miR-29c and miR-324-3p, is highly indicative of metastatic melanoma. Hierarchical clustering analysis supported the results and clearly distinguished melanoma patients from healthy donors, metastatic colon and renal cancer patients.

Discussion and conclusions: This approach is independent of tumor heterogeneity and is expected to have superior biomarker performances.  相似文献   

6.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

7.
Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500–1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30–60 micrometastases in the lung (with many animals also having 2–30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis.  相似文献   

8.
Metastasis, the process by which cancer cells spread to distant sites and form secondary tumors, depends upon the ability of cells to escape the primary tumor, and colonize and proliferate in a novel microenvironment. Many mechanisms have been proposed to explain this phenomenon although no theory has comprehensively explained all biological observations. There is growing evidence that host hereditary factors modulate the ability of tumor cells to form metastatic lesions, and host genetic polymorphism could be a significant variable in this process. This review is intended to illustrate the role of hereditary variation in metastatic progression, how this integrates with currently proposed metastatic mechanisms, and the potential clinical impact on this frequently fatal consequence of cancer.  相似文献   

9.
The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF) consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+)T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.  相似文献   

10.
Objective We investigated serum levels of CA 15-3, sHER2 and CA 125, and their usefulness in the detection of metastatic disease in breast cancer patients.

Methods The levels of CA 15-3, sHER2 and CA 125 tumour markers were determined in 60 patients, 40 with localized and 20 with metastatic breast carcinoma. The control group consisted of 10 healthy women.

Results We found that, at the time of diagnosis, serum levels of all three tumour markers were elevated in patients with distant metastases, but of minute importance in the detection of any breast cancer. When the data for the individual markers were combined the overall sensitivity of metastases detection with all three markers improved. In this regard, 90% of patients with distant metastases had an increase in serum level of at least one of tested tumour markers. Similar results were obtained using receiver operating characteristic curve (ROC). Moreover, using ROC we defined cut-off values for metastasis detection for each of the tested markers.

Conclusion Our findings indicate that measurement of CA 15-3 serum values in conjunction with sHER2 and CA 15-3 can increase sensitivity in metastasis detection.  相似文献   

11.
12.

Background

Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.

Results

We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.

Conclusions

We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.  相似文献   

13.
Breast cancer is the most common cancer in women, and this prevalence has a major impact on health worldwide. Localized breast cancer has an excellent prognosis, with a 5-year relative survival rate of 85%. However, the survival rate drops to only 23% for women with distant metastases. To date, the study of breast cancer metastasis has been hampered by a lack of reliable metastatic models. Here we describe a novel in vivo model using human breast cancer xenografts in NOD scid gamma (NSG) mice; in this model human breast cancer cells reliably metastasize to distant organs from primary tumors grown within the mammary fat pad. This model enables the study of the entire metastatic process from the proper anatomical site, providing an important new approach to examine the mechanisms underlying breast cancer metastasis. We used this model to identify gene expression changes that occur at metastatic sites relative to the primary mammary fat pad tumor. By comparing multiple metastatic sites and independent cell lines, we have identified several gene expression changes that may be important for tumor growth at distant sites.  相似文献   

14.
We put forward a model for cancer metastasis as a migration phenomenon between tumor cell populations coexisting and evolving in two different habitats. One of them is a primary tumor and the other one is a secondary or metastatic tumor. The evolution of the different cell phenotype populations in each habitat is described by means of a simple quasispecies model allowing for a cascade of mutations between the different phenotypes in each habitat. The cell migration event is supposed to be unidirectional and take place continuously in time. The possible clinical outcomes of the model depending on the parameter space are analyzed and the effect of the resection of the primary tumor is studied.  相似文献   

15.
The effects of primary tumors on the host systemic environment and resulting contributions of the host to tumor growth are poorly understood. Here, we find that human breast carcinomas instigate the growth of otherwise-indolent tumor cells, micrometastases, and human tumor surgical specimens located at distant anatomical sites. This systemic instigation is accompanied by incorporation of bone-marrow cells (BMCs) into the stroma of the distant, once-indolent tumors. We find that BMCs of hosts bearing instigating tumors are functionally activated prior to their mobilization; hence, when coinjected with indolent cells, these activated BMCs mimic the systemic effects imparted by instigating tumors. Secretion of osteopontin by instigating tumors is necessary for BMC activation and the subsequent outgrowth of the distant otherwise-indolent tumors. These results reveal that outgrowth of indolent tumors can be governed on a systemic level by endocrine factors released by certain instigating tumors, and hold important experimental and therapeutic implications.  相似文献   

16.
Purpose: Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. Methods: An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. Results: CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. Conclusions: CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.  相似文献   

17.
Summary Administration of a low dose of l-PAM (0.75 mg/kg) to mice bearing a large SC MOPC-315 tumor and extensive metastases led to the development of augmented antitumor immune potential in their hitherto immunosuppressed spleen cells. Such drug-induced potentiation of antitumor immune responsiveness appeared by day 2 after chemotherapy, and it could not be further enhanced but was actually reduced by depletion of glass-adherent cells, a procedure which is effective in depleting the cells known to have inhibitory activity (i.e., macrophages and metastatic tumor cells). To establish that l-PAM can lead to selective in situ abrogation of the inhibitory effectiveness of the splenic macrophages and metastatic tumor cells, we demonstrated that incubation of immunosuppressed tumor-bearer spleen cells with a low concentration of l-PAM in vitro also resulted in augmented antitumor immune potential that could not be further augmented by depletion of glass-adherent cells. l-PAM-mediated enhancement of the antitumor immune potential of immunosuppressed tumor bearer spleen cells was due at least in part to the effects of the drug on the splenic metastatic tumor cells. Isolated tumor cells treated with a low concentration of l-PAM were not only devoid of inhibitory activity for the primary in vitro antitumor immune response by normal spleen cells, but actually manifested a strong immunostimulatory capacity. Thus, l-PAM given at a low dose enhances the development of potent antitumor immunity which brings about the eradication of a large tumorigenic load that remains after the drug has been cleared from the circulation.Presented in part at the 67th annual meeting of the Federation of American Societies for Experimental Biology in Chicago, April 10–15, 1983 Abbreviations used: L-PAM, l-phenylalanine mustard (Melphalan); CY, cyclophosphamide  相似文献   

18.
Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b+Ly-6G/C+ myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.  相似文献   

19.
Metastatic disease is the major cause of morbidity and mortality in cancer. Although surgery, chemotherapy, or radiation can often control primary tumor growth, successful eradication of disseminated metastases remains rare. We have now tested whether direct targeting tumor tissues to generate antitumor immune response before surgical excision produces sufficient CTL against micrometastases. One unsolved problem is whether such response allows coming CTL to be educated and then exit the tumor site. Another unsolved problem is whether these CTL can then patrol and effectively eliminate spontaneously metastasized tumor cells in the periphery. In this study, we have shown that adenovirus-expressing TNFSF14 [LIGHT (name derived from homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes); Ad-LIGHT] inoculated directly into primary 4T1 tumor, a highly aggressive, spontaneously metastasizing mammary carcinoma, followed by surgical removal of the primary tumor can eradicate established and disseminated metastatic tumor cells in the peripheral tissues. Furthermore, we clearly show with a fibrosarcoma model Ag104L(d) that local treatment can generate plenty of tumor-specific CTL that exit the primary tumor and infiltrate distal tumors to completely eradicate distal tumors. Therefore, targeting the primary tumor with Ad-LIGHT before surgical excision is a new strategy to elicit better immune response for the eradication of spontaneous metastases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号