首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase   总被引:1,自引:0,他引:1  
Cytoplasmic polyadenylation regulates mRNA stability and translation and is required for early development and synaptic plasticity. The GLD-2 poly(A) polymerase catalyzes cytoplasmic polyadenylation in the germline of metazoa. Among vertebrates, the enzyme is encoded by two isoforms of mRNA that differ only in the length of their 3'-UTRs. Here we focus on regulation of vertebrate GLD-2 mRNA. We show that the 3'-UTR of GLD-2 mRNA elicits its own polyadenylation and translational activation during frog oocyte maturation. We identify the sequence elements responsible for repression and activation, and demonstrate that CPEB and PUF proteins likely mediate repression in the resting oocyte. Regulated polyadenylation of GLD-2 mRNA is conserved, as are the key regulatory elements. Poly(A) tails of GLD-2 mRNA increase in length in the brain in response to neuronal stimulation, suggesting that a comparable system exists in that tissue. We propose a positive feedback circuit in which translation of GLD-2 mRNA is stimulated by its polyadenylation, thereby reinforcing the switch to polyadenylate and activate batteries of mRNAs.  相似文献   

2.
Cytoplasmic polyadenylation has an essential role in activating maternal mRNA translation during early development. In vertebrates, the reaction requires CPEB, an RNA-binding protein and the poly(A) polymerase GLD-2. GLD-2-type poly(A) polymerases form a family clearly distinguishable from canonical poly(A) polymerases (PAPs). In Drosophila, canonical PAP is involved in cytoplasmic polyadenylation with Orb, the Drosophila CPEB, during mid-oogenesis. We show that the female germline GLD-2 is encoded by wispy. Wispy acts as a poly(A) polymerase in a tethering assay and in vivo for cytoplasmic polyadenylation of specific mRNA targets during late oogenesis and early embryogenesis. wispy function is required at the final stage of oogenesis for metaphase of meiosis I arrest and for progression beyond this stage. By contrast, canonical PAP acts with Orb for the earliest steps of oogenesis. Both Wispy and PAP interact with Orb genetically and physically in an ovarian complex. We conclude that two distinct poly(A) polymerases have a role in cytoplasmic polyadenylation in the female germline, each of them being specifically required for different steps of oogenesis.  相似文献   

3.
4.
Two distinct poly(A) polymerases in yeast nuclei   总被引:3,自引:0,他引:3  
β-Hydroxy-β-methylglutaryl coenzyme A reductase activity in rat liver increased 2 to 7-fold after subcutaneous administration of insulin into normal or diabetic animals. Reductase activity began increasing after one hour, rose to a maximum in two to three hours, and then declined to the control level after six hours. This response was elicited during the time of day when the normal diurnal variation in reductase activity approached a minimum. It was also elicited when animals did not have access to food. This stimulation of reductase activity was completely blocked when glucagon was administered in conjunction with insulin. The increase in reductase activity after insulin administration was accompanied by a proportionate increase in activity for the conversion of acetate to cholesterol.  相似文献   

5.
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2–GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2–RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.  相似文献   

6.
7.
Three DNA polymerases that use poly(rA).oligo(dT) were partially purified from cytoplasmic extracts of cultured mouse cells (after removal of mitochondria), and characterized. One is similar to, and may be the same as, the mitochondrial DNA polymerase gamma. The other two enzymes, one 7.5 S and the other 3.6 S, share some properties with DNA polymerases beta and gamma, e.g. their responses to certain inhibitors; however, they are not clearly identified with any previously well-characterized mammalian DNA polymerases. It is also demonstrated that the response of DNA polymerase gamma to N-ethylmaleimide is template dependent, and that DNA polymerase alpha has an authentic (albeit small) activity with poly(rA).oligo(dT).  相似文献   

8.
A family of poly(U) polymerases   总被引:5,自引:2,他引:3       下载免费PDF全文
The GLD-2 family of poly(A) polymerases add successive AMP monomers to the 3' end of specific RNAs, forming a poly(A) tail. Here, we identify a new group of GLD-2-related nucleotidyl transferases from Arabidopsis, Schizosaccharomyces pombe, Caenorhabditis elegans, and humans. Like GLD-2, these enzymes are template independent and add nucleotides to the 3' end of an RNA substrate. However, these new enzymes, which we refer to as poly(U) polymerases, add poly(U) rather than poly(A) to their RNA substrates.  相似文献   

9.
The poly(A) polymerases from the cytosol and ribosomal fractions of Ehrlich ascites tumour cells are isolated and partially purified by DEAE-cellulose and phosphocellulose column chromatography. Two distinct enzymes are identified: (a) a cytosol Mn2+-dependent poly(A) polymerase (ATP:RNA adenylyltransferase) and (b) a ribosome-associated enzyme defined tentatively as ATP(UTP): RNA nucleotidyltransferase. The cytosol poly(A) polymerase is strictly Mn2+-dependent (optimum at 1 mM Mn2+) and uses only ATP as substrate, poly(A) is a better primer than ribosomal RNA. The purified enzyme is free of poly(A) hydrolase activity, but degradation of [3H]poly(A) takes place in the presence of inorganic pyrophosphate. Most likely this enzyme is of nuclear origin. The ribosomal enzyme is associated with the ribosomes but it is found also in free state in the cytosol. The purified enzyme uses both ATP and UTP as substrates. The substrate specificity varies depending on ionic conditions: the optimal enzyme activity with ATP as substrate is at 1 mM Mn2+, while that with UTP as substrate is at 10--20 mM Mg2+. The enzymes uses both ribosomal RNA and poly(A) [but not poly(U)] as primers. The purified enzyme is free of poly(A) hydrolase activity.  相似文献   

10.
Poly(A)-binding proteins (PABPs) are central to the regulation of messenger RNA (mRNA) translation and stability; however, the roles and contributions of different PABP family members in controlling gene expression are not yet fully understood. In this paper, the current state of knowledge of the different cytoplasmic PABP proteins and their function in animal cells will be summarised, with particular reference to their roles in development. Possible regulatory mechanisms and potential new roles for these proteins in the control of specific mRNAs are also highlighted.  相似文献   

11.
Vertebrate GLD2 poly(A) polymerases in the germline and the brain   总被引:6,自引:0,他引:6  
Cytoplasmic polyadenylation is important in the control of mRNA stability and translation, and for early animal development and synaptic plasticity. Here, we focus on vertebrate poly(A) polymerases that are members of the recently described GLD2 family. We identify and characterize two closely related GLD2 proteins in Xenopus oocytes, and show that they possess PAP activity in vivo and in vitro and that they bind known polyadenylation factors and mRNAs known to receive poly(A) during development. We propose that at least two distinct polyadenylation complexes exist in Xenopus oocytes, one of which contains GLD2; the other, maskin and Pumilio. GLD2 protein interacts with the polyadenylation factor, CPEB, in a conserved manner. mRNAs that encode GLD2 in mammals are expressed in many tissues. In the brain, mouse, and human GLD2 mRNAs are abundant in anatomical regions necessary for long-term cognitive and emotional learning. In the hippocampus, mouse GLD2 mRNA colocalizes with CPEB1 and Pumilio1 mRNAs, both of which are likely involved in synaptic plasticity. We suggest that mammalian GLD2 poly(A) polymerases are important in synaptic translation, and in polyadenylation throughout the soma.  相似文献   

12.
L J Otero  M P Ashe    A B Sachs 《The EMBO journal》1999,18(11):3153-3163
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.  相似文献   

13.
14.
15.
The conserved RNA binding protein La recognizes UUU-3'OH on its small nuclear RNA ligands and stabilizes them against 3'-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all ~150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.  相似文献   

16.
Poly(A) polymerases purified from rat liver nuclei consisted of two distinct species, a predominant enzyme of Mr = 38,000 and a minor one of Mr = 48,000. Prior to extensive purification, the minor enzyme constituted approximately 1% of the total liver poly(A) polymerase. Poly(A) polymerase purified from a rat tumor, Morris hepatoma 3924A, was comprised of a single species of Mr = 48,000 which was identical to the minor liver enzyme with respect to chromatographic and immunological characteristics. Gel filtration on Sephacryl S-200 using 0.3 M NaCl for elution showed that the major liver poly(A) polymerase had a molecular weight of 156,000, which corresponded to a tetramer of the 38-kDa polypeptide, whereas the hepatoma and minor liver 48-kDa species existed as dimers with a molecular weight of 96,000. Fractionation by Sephacryl S-200 resulted in complete loss of both liver poly(A) polymerase activities which could be restored by exogenous N1-type protein kinase. Following CNBr cleavage, the 48-kDa poly(A) polymerase from liver and hepatoma exhibited nearly identical peptide maps which were distinct from that of the major liver enzyme (38 kDa). Antibodies raised against tumor poly(A) polymerase reacted with the 48-kDa polypeptide but not with the 38-kDa liver enzyme. Immune complex formation was observed between seven of the eight CNBr cleavage products derived from the 48-kDa polypeptide of both liver and hepatoma. It is concluded that distinct genes in rat liver code for two structurally and immunologically unique nuclear poly(A) polymerases, one of which is identical to the enzyme from the hepatoma.  相似文献   

17.
18.
Poly(dT) products which were synthesized depending on (rA)n . (dT)12-18 as a template . primer by mammalian DNA polymerases beta and gamma were analyzed by alkaline sucrose gradient centrifugation. The size of the population of poly(dT) chains synthesized by DNA polymerase beta increased slowly and consistently during incubation up to at least 30 min. On the other hand, the product size with DNA polymerase gamma reached the final size (7 s) within 5 min and the number of products increased during further incubation. Comparison of product number per enzyme molecule suggests that DNA polymerase beta acts on multiple primers in a distributive fashion while DNA polymerase gamma completes poly(dT) chains of large size in a one-by-one fashion.  相似文献   

19.
20.
The PARP-1 expression level and poly (ADP-ribosyl)ation activity in cancer markedly affect the therapeutic outcome. Nicaraven, a free radical scavenger has been found to inhibit PARP, but the effect on cancer cells is still unclear. In this study, we investigated the potential role and molecular mechanism of nicaraven on cancer cells. Using U937 lymphoma cells and HCT-8 colorectal cancer cells, we found that nicaraven moderately reduced the cell viability of both cells in a dose-dependent manner. Interestingly, nicaraven significantly induced apoptosis of U937 cells that are dominantly expressing Bcl-2 but induced PAR-dependent cell death (parthanatos) of HCT-8 cells that are highly expressing poly (ADP-ribose) glycohydrolase (PARG). Based on our data, nicaraven seems to induce programmed cell death through distinct mechanisms, according to the expression levels of Bcl-2 and PARG in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号