首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   

2.
3.
Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1–MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.  相似文献   

4.
Certain Polycomb group (PcG) genes are themselves targets of PcG complexes. Two of these constitute the Drosophila Psc-Su(z)2 locus, a region whose chromatin is enriched for H3K27me3 and contains several putative Polycomb response elements (PREs) that bind PcG proteins. To understand how PcG mechanisms regulate this region, the repressive function of the PcG protein binding sites was analyzed using reporter gene constructs. We find that at least two of these are functional PREs that can silence a reporter gene in a PcG-dependent manner. One of these two can also display anti-silencing activity, dependent on the context. A PcG protein binding site near the Psc promoter behaves not as a silencer but as a down-regulation module that is actually stimulated by the Pc gene product but not by other PcG products. Deletion of one of the PREs increases the expression level of Psc and Su(z)2 by twofold at late embryonic stages. We present evidence suggesting that the Psc-Su(z)2 locus is flanked by insulator elements that may protect neighboring genes from inappropriate silencing. Deletion of one of these regions results in extension of the domain of H3K27me3 into a region containing other genes, whose expression becomes silenced in the early embryo.  相似文献   

5.
The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.  相似文献   

6.

Background

Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental genes. In Drosophila, cis-regulatory regions termed PcG response elements (PREs) act as nucleation sites for PcG proteins to create large repressive PcG domains that are marked by trimethylation of lysine 27 on histone H3 (H3K27me3). In addition to an action in cis, PREs can interact over long distances, thereby enhancing PcG dependent silencing. How PcG domains are established, which factors limit their propagation in cis, and how long range interactions of PREs in trans affect the chromatin structure is largely unknown.

Principal Findings

We demonstrate that the insertion of a PRE-containing transgene in the Drosophila genome generates an artificial PcG domain and we analyze its organization by quantitative ChIP and ChIP-on-chip experiments. Intriguingly, a boundary element and known insulator proteins do not necessarily interfere with spreading of H3K27me3. Instead, domain borders correlate with the presence of promoter regions bound by RNA Polymerase II and active chromatin marks. In contrast, genes that are silent during early fly development get included within the PcG domain and this incorporation interferes with gene activation at later developmental stages. Moreover, trans-interaction of the transgenic PRE with its homologous endogenous PRE results in increased PcG binding, correlating with reinforced silencing of genes within the domain borders.

Conclusions

Our results suggest that higher-order organization of PcG-bound chromatin can stabilize gene silencing within PcG domains. Further we propose that multi-protein complexes associated with active promoters are able to define the limits of PcG domains. Future work aimed to pinpoint the factors providing this barrier function will be required to understand the precise molecular mechanism by which active promoter regions can act as boundaries to stop spreading of H3K27me3.  相似文献   

7.
8.
9.
Hox gene expression is activated by all-trans retinoic acid (RA), through binding to retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimers bound at RA response elements (RAREs) of target genes. The RARs and RXRs each have three isotypes (alpha, beta, and gamma), which are encoded by distinct genes. Hox genes are also repressed by polycomb group proteins (PcG), though how these proteins are targeted is unclear. We used chromatin immunoprecipitation assays to investigate the association of RXRalpha, RARgamma, cofactors, and the PcG protein SUZ12 with the Hoxa1, RARbeta2, and Cyp26A1 RAREs in F9 embryonal carcinoma cells (teratocarcinoma stem cells) during RA treatment. We demonstrate that RARgamma and RXRalpha are associated with RAREs prior to and during RA treatment. pCIP, p300, and RNA polymerase II levels increased at target RAREs upon exposure to RA. Conversely, SUZ12 was found associated with all RAREs studied and these associations were attenuated by treatment with RA. Upon RA removal, SUZ12 re-associated with RAREs. H3ac, H3K4me2, and H3K27me3 marks were simultaneously detected at target loci, indicative of a bivalent domain chromatin structure. During RA mediated differentiation, H3K27me3 levels decreased at target RAREs whereas H3ac and H3K4me2 levels remained constant. These studies provide insight into the dynamics of association of co-regulators with RAREs and demonstrate a novel link between RA signaling and PcG repression.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson''s disease.  相似文献   

17.
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.  相似文献   

18.
19.
PcG蛋白主要以PRC1和PRC2两组复合物的形式存在,通过参与核小体组蛋白翻译后修饰等机制,发挥调控靶基因转录的功能. PRC1复合体中的RING1A/B具有使组蛋白H2AK119泛素化的活性;PRC2中的EZH2具有使组蛋白H3K27三甲基化的活性,形成PRC1锚定到核小体上的位点. PcG蛋白的表达特征具有发育阶段和细胞类型时空特异性. 长链非编码RNA等反式作用因子能募集PcG蛋白结合于靶基因,发挥靶向作用. 本文就PcG蛋白功能、构成的时空特异性、募集机制及其与疾病发生的关系研究进展做一综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号