首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite 20 years of intensive effort to understand the global carbon cycle, the budget for carbon dioxide in the atmosphere is unbalanced. To explain why atmospheric CO2 is not increasing as rapidly as it should be, various workers have suggested that land vegetation acts as a sink for carbon dioxide. Here, I examine various possibilities and find that the evidence for a sink of sufficient magnitude on land is poor. Moreover, it is unlikely that the land vegetation will act as a sink in the postulated warmer global climates of the future. In response to rapid human population growth, destruction of natural ecosystems in the tropics remains a large net source of CO2 for the atmosphere, which is only partially compensated by the potential for carbon storage in temperate and boreal regions. Direct and inadvertent human effects on land vegetation might increase the magnitude of regional CO2 storage on land, but they are unlikely to play a significant role in moderating the potential rate of greenhouse warming in the future.  相似文献   

2.
The efforts to explain the ‘missing sink’ for anthropogenic carbon dioxide (CO2) have included in recent years the role of nitrogen as an important constraint for biospheric carbon fluxes. We used the Nitrogen Carbon Interaction Model (NCIM) to investigate patterns of carbon and nitrogen storage in different compartments of the terrestrial biosphere as a consequence of a rising atmospheric CO2 concentration, in combination with varying levels of nitrogen availability. This model has separate but closely coupled carbon and nitrogen cycles with a focus on soil processes and soil–plant interactions, including an active compartment of soil microorganisms decomposing litter residues and competing with plants for available nitrogen. Biological nitrogen fixation is represented as a function of vegetation nitrogen demand. The model was validated against several global datasets of soil and vegetation carbon and nitrogen pools. Five model experiments were carried out for the modeling periods 1860–2002 and 2002–2100. In these experiments we varied the nitrogen availability using different combinations of biological nitrogen fixation, denitrification, leaching of soluble nitrogen compounds with constant or rising atmospheric CO2 concentrations. Oversupply with nitrogen, in an experiment with nitrogen fixation, but no nitrogen losses, together with constant atmospheric CO2, led to some carbon sequestration in organismic pools, which was nearly compensated by losses of C from soil organic carbon pools. Rising atmospheric CO2 always led to carbon sequestration in the biosphere. Considering an open nitrogen cycle including dynamic nitrogen fixation, and nitrogen losses from denitrification and leaching, the carbon sequestration in the biosphere is of a magnitude comparable to current observation based estimates of the ‘missing sink.’ A fertilization feedback between the carbon and nitrogen cycles occurred in this experiment, which was much stronger than the sum of separate influences of high nitrogen supply and rising atmospheric CO2. The demand‐driven biological nitrogen fixation was mainly responsible for this result. For the modeling period 2002–2100, NCIM predicts continued carbon sequestration in the low range of previously published estimates, combined with a plausible rate of CO2‐driven biological nitrogen fixation and substantial redistribution of nitrogen from soil to plant pools.  相似文献   

3.
Amazonia and the modern carbon cycle: lessons learned   总被引:1,自引:0,他引:1  
In this paper, we review some critical issues regarding carbon cycling in Amazonia, as revealed by several studies conducted in the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). We evaluate both the contribution of this magnificent biome for the global net primary productivity/net ecosystem exchange (NPP/NEE) and the feedbacks of climate change on the dynamics of Amazonia. In order to place Amazonia in a global perspective and make the carbon flux obtained through the LBA project comparable with global carbon budgets, we extrapolated NPP/NEE values found by LBA studies to the entire area of the Brazilian Amazon covered by rainforest. The carbon emissions due to land use changes for the tropical regions of the world produced values from 0.96 to 2.4 Pg C year−1, while atmospheric CO2 inversion models have recently indicated that tropical lands in the Americas could be exchanging a net 0.62±1.15 Pg C year−1 with the atmosphere. The difference calculated from these two methods would imply a local sink of approximately 1.6–1.7 Pg C year−1, or a source of 0.85 ton C ha−1 year−1. Using our crude extrapolation of LBA values for the Amazon forests (5 million km2) we estimate a range for the C flux in the region of −3.0 to 0.75 Pg C year−1. The exercise here does not account for environmental variability across the region, but it is an important driver for present and future studies linking local process (i.e. nutrient availability, photosynthetic capacity, and so forth) to global and regional dynamic approaches.  相似文献   

4.
Land-use change is likely to be a major component of global change at high latitudes, potentially causing significant alterations in soil C and N cycling. We addressed the biogeochemical impacts of land-use change in fully replicated black spruce forests and agricultural fields of different ages (following deforestation) and under different management regimes in interior Alaska. Change from forests to cultivated fields increased summer temperatures in surface soil layers by 4–5 °C, and lengthened the season of biological activity by two to three weeks. Decomposition of a common substrate (oat stubble) was enhanced by 25% in fields compared to forests after litter bags were buried for one year. In-situ net N mineralization rates in site-specific soil were similar in forests and fields during summer, but during winter, forests were the only sites where net N immobilization occurred. Field age and management had a significant impact on C and N mineralization. Rates of annual decomposition, soil respiration and summer net N mineralization tended to be lower in young than in old fields and higher in fallow than in planted young fields. To identify the major environmental factors controlling C and N mineralization, soil temperature, moisture and N availability were studied. Decomposition and net N mineralization seemed to be mainly driven by availability of inorganic N. Soil temperature played a role only when comparing forests and fields, but not in field-to-field differences. Results from soil respiration measurements in fields confirmed low sensitivity of heterotrophic respiration, and thus decomposition to temperature. In addition, both soil respiration and net N mineralization were limited by low soil water contents. Our study showed that (1) C and N mineralization are enhanced by forest clearing in subarctic soils, and (2) N availability is more important than soil temperature in controling C and N mineralization following forest clearing. Projecting the biogeochemical impacts of land-use change at high latitudes requires an improved understanding of its interactions with other factors of global change, such as changing climate and N deposition.  相似文献   

5.
13C discrimination during CO2 assimilation by the terrestrial biosphere   总被引:1,自引:0,他引:1  
Estimates of the extent of the discrimination against13CO2 during photosynthesis (A) on a global basis were made using gridded data sets of temperature, precipitation, elevation, humidity and vegetation type. Stomatal responses to leaf-to-air vapour mole fraction difference (D, leaf-to-air vapour pressure difference divided by atmospheric pressure) were first determined by a literature review and by assuming that stomatal behaviour results in the optimisation of plant water use in relation to carbon gain. Using monthly time steps, modelled stomatal responses toD were used to calculate the ratio of stomatal cavity to ambient CO2 mole fractions and then, in association with leaf internal conductances, to calculate A. Weighted according to gross primary productivity (GPP, annual net CO2 asimilation per unit ground area), estimated A for C3 biomes ranged from 12.9 for xerophytic woods and shrub to 19.6 for cool/cold deciduous forest, with an average value from C3 plants of 17.8. This is slightly less than the commonly used values of 18–20. For C4 plants the average modelled discrimination was 3.6, again slightly less than would be calculated from C4 plant dry matter carbon isotopic composition (yielding around 5). From our model we estimate that, on a global basis, 21% of GPP is by C4 plants and for the terrestrial biosphere as a whole we calculate an average isotope discrimination during photosynthesis of 14.8. There are large variations in A across the globe, the largest of which are associated with the precence or absence of C4 plants. Due to longitudinal variations in A, there are problems in using latitudinally averaged terrestrial carbon isotope discriminations to calculate the ratio of net oceanic to net terrestrial carbon fluxes.  相似文献   

6.
Carbon dioxide is taken up by agricultural crops and released soon after during the consumption of agricultural commodities. The global net impact of this process on carbon flux to the atmosphere is negligible, but impact on the spatial distribution of carbon dioxide uptake and release across regions and continents is significant. To estimate the consumption and release of carbon by humans over the landscape, we developed a carbon budget for humans in the United States. The budget was derived from food commodity intake data for the US and from algorithms representing the metabolic processing of carbon by humans. Data on consumption, respiration, and waste of carbon by humans were distributed over the US using geospatial population data with a resolution of ~450 × 450 m. The average adult in the US contains about 21 kg C and consumes about 67 kg C year−1 which is balanced by the annual release of about 59 kg C as expired CO2, 7 kg C as feces and urine, and less than 1 kg C as flatus, sweat, and aromatic compounds. In 2000, an estimated 17.2 Tg C were consumed by the US population and 15.2 Tg C were expired to the atmosphere as CO2. Historically, carbon stock in the US human population has increased between 1790 and 2006 from 0.06 Tg to 5.37 Tg. Displacement and release of total harvested carbon per capita in the US is nearly 12% of per capita fossil fuel emissions. Humans are using, storing, and transporting carbon about the Earth’s surface. Inclusion of these carbon dynamics in regional carbon budgets can improve our understanding of carbon sources and sinks.  相似文献   

7.
兴安落叶松林碳平衡和全球变化影响研究   总被引:21,自引:9,他引:21  
利用CENTURY模型模拟兴安落叶松林的C循环并探讨全球变化对其C循环的影响,结果表明,兴安落叶松林是一个C汇,年净吸收C2.65t.hm^-2,气候变化和大气CO2浓度增加将对北方森林的生长有利,使其净吸收C的能力增强,温度上升2℃时,兴安落叶松林的植物总生物量和生产力均增加,而土壤C含量降低,降水减少20%比降水增加20%时其植物总生物量,生产力和土壤C含量变化的幅度大,说明温度是大兴安岭地区森林生长的主要限制因子。  相似文献   

8.
The clearing of tropical forest for pasture leads to important changes in soil organic carbon (C) stocks and cycling patterns. We used the naturally occurring distribution of13C in soil organic matter (SOM) to examine the roles of forest- and pasture-derived organic matter in the carbon balance in the soils of 3- to 81-year-old pastures created following deforestation in the western Brazilian Amazon Basin state of Rondônia. Different 13C values of C3 forest-derived C (-28) and C4 pasture-derived C (-13) allowed determination of the origin of total soil C and soil respiration. The 13C of total soil increased steadily across ecosystems from -27.8 in the forest to -15.8 in the 81-year-old pasture and indicated a replacement of forest-derived C with pasture-derived C. The 13C of respired CO2 increased more rapidly from -26.5 in the forest to -17 in the 3- to 13-year-old pastures and indicated a faster shift in the origin of more labile SOM. In 3-year-old pasture, soil C derived from pasture grasses made up 69% of respired C but only 17% of total soil C in the top 10 cm. Soils of pastures 5 years old and older had higher total C stocks to 30 cm than the original forest. This occurred because pasture-derived C in soil organic matter increased more rapidly than forest-derived C was lost. The increase of pasture-derived C in soils of young pastures suggests that C inputs derived from pasture grasses play a critical role in development of soil C stocks in addition to fueling microbial respiration. Management practices that promote high grass production will likely result in greater inputs of grass-derived C to pasture soils and will be important for maintaining tropical pasture soil C stocks.  相似文献   

9.
Global environmental changes, such as rising atmospheric CO2 concentrations, have a wide range of direct effects on plant physiology, growth, and fecundity. These environmental changes also can affect plants indirectly by altering interactions with other species. Therefore, the effects of global changes on a particular species may depend on the presence and abundance of other community members. We experimentally manipulated atmospheric CO2 concentration and amounts of herbivore damage (natural insect folivory and clipping to simulate browsing) to examine: (1) how herbivores mediate the effects of elevated CO2 (eCO2) on the growth and fitness of Arabidopsis thaliana; and (2) how predicted changes in CO2 concentration affect plant resistance to herbivores, which influences the amount of damage plants receive, and plant tolerance of herbivory, or the fitness consequences of damage. We found no evidence that CO2 altered resistance, but plants grown in eCO2 were less tolerant of herbivory—clipping reduced aboveground biomass and fruit production by 13 and 22%, respectively, when plants were reared under eCO2, but plants fully compensated for clipping in ambient CO2 (aCO2) environments. Costs of tolerance in the form of reduced fitness of undamaged plants were detected in eCO2 but not aCO2 environments. Increased costs could reduce selection on tolerance in eCO2 environments, potentially resulting in even larger fitness effects of clipping in predicted future eCO2 conditions. Thus, environmental perturbations can indirectly affect both the ecology and evolution of plant populations by altering both the intensity of species interactions as well as the fitness consequences of those interactions.  相似文献   

10.
Free air carbon dioxide enrichment: development,progress, results   总被引:14,自引:0,他引:14  
Hendrey  G. R.  Lewin  K. F.  Nagy  J. 《Plant Ecology》1993,104(1):17-31
Credible predictions of climate change depend in part on predictions of future CO2 concentrations in the atmosphere. Terrestrial plants are a large sink for atmospheric CO2 and the sink rate is influenced by the atmospheric CO2 concentration. Reliable field experiments are needed to evaluate how terrestrial plants will adjust to increasing CO2 and thereby influence the rate of change of atmospheric CO2. Brookhaven National Laboratory (BNL) has developed a unique Free-Air CO2 Enrichment (FACE) system for a cooperative research program sponsored by the U.S. Department of Energy and U.S. Department of Agriculture, currently operating as the FACE User Facility at the Maricopa Agricultural Center (MAC) of the University of Arizona. The BNL FACE system is a tool for studying the effects of CO2 enrichment on vegetation and natural ecosystems, and the exchange of carbon between the biosphere and the atmosphere, in open-air settings without any containment. The FACE system provides stable control of CO2 at 550 ppm ±10%, based on 1-min averages, over 90% of the time. In 1990, this level of control was achieved over an area as large as 380 m2, at an annual operating cost of $668 m–2. During two field seasons of enrichment with cotton (Gossypium hirsutum) as the test plant, enrichment to 550 ppm CO2 resulted in significant increases in photosynthesis and biomass of leaves, stems and roots, reduced evapotranspiration, and changes in root morphology. In addition, soil respiration increased and evapotranspiration decreased.  相似文献   

11.
Ranavirus: past, present and future   总被引:1,自引:0,他引:1  
Emerging infectious diseases are a significant threat to global biodiversity. While historically overlooked, a group of iridoviruses in the genus Ranavirus has been responsible for die-offs in captive and wild amphibian, reptile and fish populations around the globe over the past two decades. In order to share contemporary information on ranaviruses and identify critical research directions, the First International Symposium on Ranaviruses was held in July 2011 in Minneapolis, MN, USA. Twenty-three scientists and veterinarians from nine countries examined the ecology and evolution of ranavirus-host interactions, potential reservoirs, transmission dynamics, as well as immunological and histopathological responses to infection. In addition, speakers discussed possible mechanisms for die-offs, and conservation strategies to control outbreaks.  相似文献   

12.
Milk production is responsible for emitting a range of greenhouse gases (GHGs), mainly carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). In Life Cycle Assessments (LCA), the Global Warming Potential with a time horizon of 100 years (GWP100) is used almost universally to aggregate emissions of individual gases into so-called CO2-equivalent emissions that are used to calculate the overall carbon footprint of milk production. However, there is growing awareness that, depending on the purpose of the LCA, metrics other than GWP100 could be justified and some would give a very different weighting for the short-lived gas CH4 relative to the long-lived gases CO2 and N2O when calculating the carbon footprint. Pastoral dairy production systems at different levels of intensification differ in the balance of short- and long-lived GHGs associated with on- and off-farm emissions. Differences in the carbon footprint of different production systems could therefore be highly sensitive to the choice of GHG metric. Here we explore the extent to which alternative GHG metric choices would alter the carbon footprint of New Zealand milk production at different levels of intensification at national, regional and individual farm scales and compared to the carbon footprint of milk of selected European countries. We find that the ranking of different production systems and individual farms in terms of their carbon footprint is relatively robust against the choice of GHG metric, despite significant differences in their utilisation of pastures versus supplementary off-farm feed, fertiliser use and energy consumption at various stages of farm operations. However, there are instances where alternative GHG metric choices would fundamentally change the conclusions of LCA of different production systems, including whether a move towards higher or lower input systems would increase or decrease the average carbon footprint of milk production in New Zealand. Greater transparency about the implications of alternative GHG metrics for LCA, and the often inadvertent and implicit value judgements embedded in these metrics, would help ensure that policy decisions and consumer choices based on LCA indeed deliver the climate outcomes intended by end-users.  相似文献   

13.
Topsoil organic carbon storage of China and its loss by cultivation   总被引:40,自引:0,他引:40  
Topsoil is very sensitive to human disturbance under the changing climate. Estimates of topsoil soil organic carbon (SOC) pool may be crucial for understanding soil C dynamics under human land uses and soil potential of mitigating the increasing atmospheric CO2 by soil C sequestration. China is a country with long history of cultivation. In this paper, we present an estimate of topsoil SOC pool and cultivation-induced pool reduction of China soils based upon the data of all the soil types identified in the 2nd national soil survey conducted during 1979–1982. The area of cultivated soils of China amounted to 138 × 106 ha while the uncultivated soils occupied 740 × 106 ha in 1980. Topsoil SOC density ranged from 0.77 to 1489 t Cha−1 in uncultivated soils and 3.52 to 591 t Cha−1 in cultivated soils with the average being 50 ± 47 t Cha−1 and 35 ± 32 t Cha−1, respectively. Geographically, the maximum mean topsoil SOC density was found in northeastern China, being of 70 ± 104 t Cha−1 for uncultivated soils and of 57 ± 54 t Cha−1 for cultivated soils, respectively. The lowest topsoil SOC density for uncultivated soils was found in East China, being of 38 ± 33 t Cha−1 and that for cultivated soils in North China, being of 30 ± 30 t Cha−1. There is still uncertainty in estimating the total topsoil SOC of uncultivated soils because a large portion of them was not surveyed during the 2nd Soil Survey. However, an estimate of total SOC for cultivated soils amounted to 5.1 Pg. On average, cultivation of China’s soils had induced a decrease of SOC density of 15 t Cha−1 giving rise to an overall pool reduction at 2 Pg. This is significantly smaller than the total SOC pool decline of 7 Pg due to cultivation of natural soils in China reported by Wu et al. (Glob. Change Biol. 2003, 9: 305–315), who made a pool estimation of whole soil profile assuming 1 m depth for all soils. As the mean topsoil SOC density of China was lower than the world average value given by Batjes (J. Soil Sci. 1996, 47: 151–163), China may be considered as a country with low SOC density and may have great potential for C sequestration under well defined management. However, the dynamics of topsoil C storage in China agricultural soils since 1980’s and the effects of modern agricultural developments on C dynamics need further study for elucidating the role of China agriculture in global climatic change.  相似文献   

14.
Humanity has become a major player within the Earth system, particularly by transforming large parts of the land surface and by altering the gaseous composition of the atmosphere. Deforestation for agricultural purposes started thousands of years ago and might have resulted in a detectable human influence on climate much earlier than the industrial revolution. This study presents a first attempt to estimate the impact of human land-use on the global carbon cycle over the last 6,000 years. A global gridded data set for the spread of permanent and non-permanent agriculture over this time period was developed and integrated within the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). The model was run with and without human land-use, and the difference in terrestrial carbon storage was calculated as an estimate of anthropogenic carbon release to the atmosphere. The modelled total carbon release during the industrial period (a.d. 1850–1990) was 148 gigatons of carbon (GtC), of which 33 GtC originated from non-permanent agriculture. For pre-industrial times (4000 b.c.a.d. 1850), the net carbon release was 79 GtC from permanent agriculture with an additional 35 GtC from non-permanent agriculture. The modelled pre-industrial carbon release was considerably lower than would be required for a substantial influence on the climate system.  相似文献   

15.
Wang X 《Oecologia》2007,152(4):595-605
Magnitude of growth enhancement by elevated CO(2) in a plant assemblage is dependent on a number of biotic and abiotic factors, including species richness. In this meta-analysis, we examined effects of elevated CO(2) on plant biomass accumulation in single- (populations) and multi-species (communities) assemblages. The primary objectives were to statistically synthesize the voluminous CO(2) studies conducted so far and to assess the collective response of plant growth to elevated CO(2) as affected by species richness. Our analysis showed that biomass enhancement by higher CO(2) was consistently lower in communities than in populations. For example, total plant biomass (W(T)) increased only 13% in communities compared to 30% in populations in response to elevated CO(2) across all studies included in this synthesis. Above- and below-ground biomass responded similarly as W (T) to elevated CO(2) and species richness. Smaller growth enhancement by CO(2) was found in communities consisting of species of different growth forms (woody vs. herbaceous species) or functional groups (legumes vs. non-legumes). This pattern was consistent across three major classes of facilities (closed, semi-open and open systems) used to manipulate CO(2) concentrations. An analysis of free-air CO(2) enrichment studies revealed that the population-community difference in growth enhancement by higher CO(2) was also dependent on the rate of N addition. Populations responded more than communities only when soil was amended with N. From the CO(2) studies synthesized in this meta-analysis, it is obvious that the collective growth responsiveness to elevated CO(2) will be lower in communities than in populations. We hypothesize that resource usurpation, i.e., competitive compartmentation of growth-limiting resources by less responsive species, may be important in determining growth response to elevated CO(2) in a community and is one of the reasons responsible for the lower biomass enhancement by elevated CO(2) in communities, as found in this synthesis.  相似文献   

16.
The majority of northern peatlands were initiated during the Holocene. Owing to their mass imbalance, they have sequestered huge amounts of carbon in terrestrial ecosystems. Although recent syntheses have filled some knowledge gaps, the extent and remoteness of many peatlands pose challenges to developing reliable regional carbon accumulation estimates from observations. In this work, we employed an individual‐ and patch‐based dynamic global vegetation model (LPJ‐GUESS) with peatland and permafrost functionality to quantify long‐term carbon accumulation rates in northern peatlands and to assess the effects of historical and projected future climate change on peatland carbon balance. We combined published datasets of peat basal age to form an up‐to‐date peat inception surface for the pan‐Arctic region which we then used to constrain the model. We divided our analysis into two parts, with a focus both on the carbon accumulation changes detected within the observed peatland boundary and at pan‐Arctic scale under two contrasting warming scenarios (representative concentration pathway—RCP8.5 and RCP2.6). We found that peatlands continue to act as carbon sinks under both warming scenarios, but their sink capacity will be substantially reduced under the high‐warming (RCP8.5) scenario after 2050. Areas where peat production was initially hampered by permafrost and low productivity were found to accumulate more carbon because of the initial warming and moisture‐rich environment due to permafrost thaw, higher precipitation and elevated CO2 levels. On the other hand, we project that areas which will experience reduced precipitation rates and those without permafrost will lose more carbon in the near future, particularly peatlands located in the European region and between 45 and 55°N latitude. Overall, we found that rapid global warming could reduce the carbon sink capacity of the northern peatlands in the coming decades.  相似文献   

17.
Multi‐year lags in tree drought recovery, termed ‘drought legacy effects’, are important for understanding the impacts of drought on forest ecosystems, including carbon (C) cycle feedbacks to climate change. Despite the ubiquity of lags in drought recovery, large uncertainties remain regarding the mechanistic basis of legacy effects and their importance for the C cycle. In this review, we identify the approaches used to study legacy effects, from tree rings to whole forests. We then discuss key knowledge gaps pertaining to the causes of legacy effects, and how the various mechanisms that may contribute these lags in drought recovery could have contrasting implications for the C cycle. Furthermore, we conduct a novel data synthesis and find that legacy effects differ drastically in both size and length across the US depending on if they are identified in tree rings versus gross primary productivity. Finally, we highlight promising approaches for future research to improve our capacity to model legacy effects and predict their impact on forest health. We emphasise that a holistic view of legacy effects – from tissues to whole forests – will advance our understanding of legacy effects and stimulate efforts to investigate drought recovery via experimental, observational and modelling approaches.  相似文献   

18.
The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century.  相似文献   

19.
The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate–carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year‐2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11–154), 47 (2–64), and 1129 (90–5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC‐related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming‐induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4–8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1–9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5–8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2.  相似文献   

20.
Abstract. We describe an approach for developing a Dynamic Global Vegetation Model (DGVM) that accounts for transient changes in vegetation distribution over a decadal time scale. The DGVM structure is based on a linkage between an equilibrium global vegetation model and smaller scale ecosystem dynamics modules that simulate the rate of vegetation change. Vegetation change is classified into four basic types, based largely on the projected change in above-ground biomass of the vegetation. These four types of change are: (1) dieback of forest, shrubland or grassland; (2) successional replacement within forest, shrubland or grassland; (3) invasion of forest, shrubland or grassland; (4) change in tree/grass ratio. We then propose an approach in which the appropriate ecosystem dynamics module for each type of change is applied and the grid cells of the global model updated accordingly. An approach for accounting for fire, as an example of a disturbance which may strongly influence the rate and spatial pattern of forest dieback, is incorporated. We also discuss data needs for the development, calibration and validation of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号