首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The beta glycoside of the tetrasaccharide sequence beta-Ant-(1-->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->2)-l-Rhap, whose aglycon allows conjugation to proteins, was synthesized for the first time. A stepwise synthetic approach was applied with thioglycosides as glycosyl donors, and the beta anomer of the compound was obtained equipped with a spacer group whose further transformation allows conjugation to suitable carriers. To synthesize the beta-anthrosyl linkage with high stereoselectivity, a linker-equipped rhamnotriose derivative was glycosylated with ethyl 4-azido-3-O-benzyl-2-O-bromoacetyl-4,6-dideoxy-1-thio-beta-d-glucopyranoside. Further functionalization of the tetrasaccharide thus obtained, followed by deprotection, gave the target substance.  相似文献   

2.
Lipopolysaccharide of Salmonella Agona smooth-type cells was obtained from bacteria by a hot phenol-water extraction procedure. Mild acid hydrolysis of lipopolysaccharide, followed by gel filtration, yielded the pure O-polysaccharide. Abequose, rhamnose, mannose, galactose and glucose in the molar ratio 0.8 : 1.0 : 1.0 : 1.1 : 0.5 were detected, and their linkages were established. Sugar configurations were determined by gas chromatography. Two repeating units, namely -->2)-[alpha-Abep-(1-->3)-]-alpha-d-Manp-(1-->4)-alpha-l-Rhap-(1-->3)-alpha-d-Galp-(1-->and -->2)-[alpha-Abep-(1-->3)-]-alpha-d-Manp-(1-->4)-alpha-l-Rhap-(1-->3)-[alpha-d-Glcp-(1-->4)-]-alpha-d-Galp-(1-->, were deduced from nuclear magnetic resonance studies. The effort to separate them was unsuccessful. An immunochemical test performed by means of Western blotting with anti O12 serum demonstrated that glucose was present in the longer lipopolysaccharide chains, at some distance from the core region.  相似文献   

3.
The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents nonglycosylated S-layer protein.  相似文献   

4.
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   

5.
Isolated from the mycelium of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%), 2-O- (13%), and 3-O-subst. Rhap (7%), nonreducing end- (11%), 2-O- (10%), 3-O- (14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive beta-elimination of RMP-Sp gave alpha-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->3)-alpha-d-Manp-(1-->2)-d-Man-ol, with Man-ol substituted at O-6 with beta-d-Galp units, a related pentasaccharide lacking beta-d-Galp units, and beta-d-Galp-(1-->6)-[alpha-d-Manp-(1-->2)]-d-Man-ol in a 16:3:1w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-ol and Hex(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen.  相似文献   

6.
The cyclic tetrasaccharide, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was oxidized in high yield to a dicarboxylic acid, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->). The parent and oxidized compound were then screened for the ability to form stable complexes with 20 metal cations. Ion-exchange thin-layer chromatography was utilized to survey binding in aqueous and 50% methanolic solutions. The screening identified Pb2+, Fe2+ and Fe3+ as forming strong metal chelates with the oxidized cyclic tetrasaccharide. The stoichiometry of the oxidized cyclic tetrasaccharide and Pb2+ complex was determined to be 1:1 using aqueous gel-permeation chromatography. Perturbations between the free and complexed structure were examined using NMR spectroscopy. Molecular simulations were used to identify a probable structure of oxidized cyclic tetrasaccharide complexed with Pb2+.  相似文献   

7.
A tetra- and a pentasaccharide were synthesized as analogues to the structure of the Streptococcus pneumoniae type 37 capsular polysaccharide, a homopolymer with a disaccharide-repeating unit of -->3)[beta-D-Glcp-(1-->2)]-beta-D-Glcp-(1-->. Synthesis of the tetrasaccharide employed a beta-(1-->2)-diglycosylation of a beta-(1-->3)-linked disaccharide. Subsequently, the pentasaccharide was synthesized from a suitably protected tetrasaccharide derivative by a beta-(1-->3)-extension at O-3'. Steric crowding was found to be an important factor in the formation of the pentasaccharide.  相似文献   

8.
Alternanase is an enzyme which endo-hydrolytically cleaves the alpha-(1-->3), alpha-(1-->6)-linked D-glucan, alternan. The main products are isomaltose, alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-D-Glc and the cyclic tetrasaccharide cyclo[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. It is also capable of acting on oligosaccharide substrates. The cyclic tetrasaccharide is slowly hydrolyzed to isomaltose. Panose and the trisaccharide alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Glc both undergo transglycosylation reactions to give rise to the cyclic tetrasaccharide plus D-glucose, with panose being converted at a much faster rate. The tetrasaccharide alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc is hydrolyzed to D-glucose plus the trisaccharide alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-D-Glc. Alternanase does not act on isomaltotriose, theanderose (6(Glc)-O-alpha-D-Glcp sucrose), or alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glc. The enzyme releases 4-nitrophenol from 4-nitrophenyl alpha-isomaltoside, but not from 4-nitrophenyl alpha-D-glucopyranoside, 4-nitrophenyl alpha-isomaltotrioside, or 4-nitrophenyl alpha-isomaltotetraoside.  相似文献   

9.
Qin ZH  Liu H  Li H  Cai MS  Li ZJ 《Carbohydrate research》2002,337(7):621-628
A potential tetrasaccharide ligand for E-selectin, (Na(+-)O(3)SO-3)Galbeta-(1-->4)[Fucalpha-(1-->3)]Glcbeta-(1-->6)Gal, an analogue of the ovarian cystadenoma glycoprotein tetrasaccharide fragment, was synthesized in a highly practical way.  相似文献   

10.
The cyclic tetrasaccharide cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] is the major compound obtained by the action of endo-alternases on the alternan polysaccharide. Crystals of this cyclo-tetra-glucose belong to the orthorhombic space group P2(1)2(1)2(1) with a = 7.620(5), b = 12.450(5) and c = 34.800(5) A. The asymmetric unit contains one tetrasaccharide together with five water molecules. The tetrasaccharide adopts a plate-like overall shape with a very shallow depression on one side. The shape is not fully symmetrical and this is clearly apparent on comparing the (phi, psi) torsion angles of the two alpha-(1-->6) linkages. There is almost 10 degrees differences in phi and more than 20 degrees differences in psi. The hydrogen bond network is asymmetric, with a single intramolecular hydrogen bond: O-2 of glucose ring 1 being the donor to O-2 of glucose ring 3. These two hydroxyl groups are located below the ring and their orientation, dictated by this hydrogen bond, makes the floor of the plate. Among the five water molecules, one located above the center of the plate occupies perfectly the shallow depression in the plate shape formed by the tetrasaccharide. Molecular dynamics simulation of the tetrasaccharide in explicit water allows rationalization of the discrepancies observed between the X-ray structures and data obtained previously by NMR.  相似文献   

11.
The synthesis of the tetrasaccharide alpha-D-Glcp-(1-->2)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-alpha-D-Manp-OMe, corresponding to the terminal tetrasaccharide portion of the glucose terminated arm of the N-glycan tetradecasaccharide, was achieved with complete stereocontrol by the use of iterative allyl protecting group mediated intramolecular aglycon delivery (allyl IAD) demonstrating the utility of intramolecular glycosylation for the stereocontrolled construction of multiple glycosidic linkages during the synthesis of an oligosaccharide.  相似文献   

12.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

13.
The lacto-N-neotetraose tetrasaccharide was synthesized on a new dendrimeric support, based on polyethylene glycol. Starting from 1-thio-beta-D-lactose, the trisaccharide (2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1-->3)-O-beta-D-galactopyranosyl-(1-->4)-1-thio-beta-D-glucopyranose was obtained using Neisseria meningitidis beta-(1-->3)-N-acetylglucosaminyltransferase according to a soluble synthesis approach, bound on the support and galactosylated using the milk beta-(1-->4)-galactosyl transferase to give after cleavage the tetrasaccharide lacto-N-neotetraose.  相似文献   

14.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

15.
Methylation analysis of ceramide tetrasaccharide isolated from human erythrocytes gave acetates of 2,3,6-tri-O-methylgalactitol and 2,4,6-tri-O-methylgalactitol in a ratio of 1:1, and about 50% of the galactose was oxidized by periodate. Rat kidney ceramide tetrasaccharide gave, in contrast, a much larger proportion of the acetates of 2,4,6-tri-O-methylgalactitol (ratio 1:0.3), and less than 20% of the galactose was oxidized by periodate. Sequential degradation by beta-N-acetylhexosaminidase, alpha-galactosidase, and beta-galactosidase showed ceramide tetrasaccharides to have identical carbohydrate sequences and anomeric structures. The major part of ceramide trihexoside derived from rat kidney ceramide tetrasaccharide migrated on thin-layer chromatography more slowly than that derived from other ceramide tetrasaccharides. The structure of a major part of rat kidney ceramide tetrasaccharide was thus determined to be GalNAcbeta(1-->3)Galalpha(1-->3)Galbeta(1-->4)Glcbeta(1-->1)Cer, whereas other ceramide tetrasaccharides have Galalpha(1-->4) structure at the penultimate residue.  相似文献   

16.
Lee YJ  Fulse DB  Kim KS 《Carbohydrate research》2008,343(10-11):1574-1584
The synthesis of dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl-(1-->5)-2,3-di-O-benzoyl-6-O-benzyl-beta-D-galactofuranosyl-(1-->4)-3-O-benzyl-2-O-pivaloyl-alpha-l-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-4,6-di-O-benzoyl-alpha-D-glucopyranosyl phosphate (1), a protected form of the tetrasaccharide phosphate of the linkage region of the arabinogalactan-peptidoglycan complex in the mycobacterial cell wall, has been accomplished. Key steps include the coupling of four monosaccharide building blocks with complete stereoselectivity by glycosylations employing thioglycosides, 2'-carboxybenzyl glycosides, and glycosyl fluorides as glycosyl donors. The alpha-glycosyl phosphate linkage was also stereoselectively elaborated by reaction of a tetrasaccharide hemiacetal with tetrabenzyl pyrophosphate in the presence of a base.  相似文献   

17.
A heptasaccharide, beta-D-Xylp-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-GlcpA-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp, the repeating unit of the exopolysaccharide from Cryptococcus neoformans serovar B, was synthesized as its methyl glycoside. Thus 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-d-mannopyranosyl trichloroacetimidate (7) and allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-4,6-di-O-benzoyl-alpha-D-mannopyranoside (8), readily obtained from the corresponding monosaccharide derivatives via simple transformation, were coupled to give a (1-->3)-linked tetrasaccharide 9. Deallylation of 9 followed by trichloroacetimidate formation produced the tetrasaccharide donor 11. Condensation of methyl 2,3,4-tri-O-benzoyl-beta-d-xylopyranosyl-(1-->4)-2-O-acetyl-6-O-benzoyl-alpha-D-mannopyranoside (18) with 11 followed by selective deacetylation yielded hexasaccharide acceptor 20. Coupling of 20 with methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate bromide (21) and subsequent deprotection furnished the target heptaoside. A hexasaccharide fragment, alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-GlcpA-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp, was also similarly synthesized as its methyl glycoside.  相似文献   

18.
Starting from L-rhamnose, D-mannose and 2-amino-2-deoxy-D-glucose hydrochloride, two disaccharide blocks, namely, ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamnopyranos yl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-1-thio-alpha-D-mannopyranoside and 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-benzy l-2-deoxy-2-phthalimido-beta-D-glucopyranoside, were synthesised and then allowed to react in the presence of N-iodosuccinimide and trifluoromethane sulfonic acid to give a tetrasaccharide derivative. This compound was converted into 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamno- pyranosyl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-- >4)-2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-2-acetamid o-4,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, which on hydrogenolysis, afforded the methyl ester 2-(trimethylsilyl)ethyl glycoside of the tetrasaccharide related to the repeating unit of the O-antigen from Shigella dysenteriae type 5.  相似文献   

19.
Reaction of 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl trichloroimidate with allyl alpha-D-mannopyranoside in the presence of TMSOTf selectively gave allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside through an orthoester intermediate. Benzoylation of 3, followed by deallylation, and then trichloroimidation afforded the disaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimidate, while benzoylation of 3 followed by selective removal of acetyl groups yielded the disaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside. Coupling of 5 with 6 gave the tetrasaccharide allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, which were converted into the tetrasaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimdate and the tetrasaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, respectively, by the same strategies as used for conversion of 3 into 5 and 6. Condensation of 5 with 13 gave the hexasaccharide 14, while condensation of 12 with 13 gave the octasaccharide 17. Dodecasaccharide 21 was obtained by the coupling of 12 with the octasaccharide acceptor 20. Similar strategies were used for the syntheses of beta-(1-->6)-linked glucose di-, tri-, tetra-, hexa-, and octamers. Deprotection of the oligosaccharides in ammonia-saturated methanol yielded the free alpha-(1-->6)-linked mannosyl and beta-(1-->6)-linked glucosyl oligomers.  相似文献   

20.
The O-chain polysaccharide of the lipopolysaccharide from the bacterium Naxibacter alkalitolerans strain YIM 31775(T) was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be built up by the following tetrasaccharide repeating unit: -->3)-alpha-D-FucpNAc-(1-->2)-beta-D-Quip3NHBu-(1-->2)-alpha-D-Rhap-(1-->)-beta-D-Galp-(1--> where HBu is hydroxy-butanoyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号