首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the corepressor, L-tryptophan, to the Escherichia coli trp-aporepressor in solution has been examined by 13C- and 19F-NMR spectroscopy. The binding of a number of tryptophan analogues have been studied by equilibrium dialysis. Evidence is presented that support the crystallographic studies (Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L. and Sigler, P. B. (1985) Nature 317, 782-786) that Val-58 is within the ring currents of the bound tryptophan and also close in space to the indole 5'-position, on the basis of heteronuclear 19F(1H)-NOE experiments. The tryptophan carboxylate is in hydrogen-bonding distance to a highly positively charged residue, probably Arg-54 and this bond strengthens on formation of the trp-repressor-DNA complex.  相似文献   

2.
Summary The E. coli chromosome contains two genes for elongation factor Tu, tufA (near the fusidic acid resistance marker) and tufB (near the rifampicin resistance marker). It has been discovered that the mutant E. coli K12 strain HAK88 bears a mutation in the tufB gene, which leads to the synthesis of a protein of increased acidity. To determine whether the mutation has altered the protein's function in peptide chain elongation, we have compared the reactivities of normal tufA EF-Tu and mutant tufB EF-Tu (purified together from HAK88) with the components of the AA-tRNA binding cycle. Normal tufA EF-Tu and mutant tufB EF-Tu are indistinguishable in their affinities for GDP, EF-Ts, and phe-tRNA, and differ only slightly in their affinities for ribosomes. Coupled with the results of a separate study showing the similarity of the normal tufA and tufB gene products, these experiments demonstrate that the mutation has not altered the function of tufB EF-Tu in peptide chain elongation. Contrary to the original report (Kuwano et al., 1974; J. Mol. Biol. 86, 689–698) the HAK88 strains we have examined no longer possess a temperature-sensitive EF-Ts. The growth rates of HAK88 strains resemble the parent HAK8 strain in their lack of tRNA dependence but unlike HAK8 show varying degrees of temperature sensitivity. We conclude that HAK88 contains a physically altered but functionally intact tufB EF-Tu. The mutation in tufB should be valuable for studying in vivo the control of expression of the genes for EF-Tu.  相似文献   

3.
4.
B Roux 《Biophysical journal》1996,71(6):3177-3185
The valence selectivity of the gramicidin channel is examined using computer simulations based on atomic models. The channel interior is modeled using a gramicidin-like periodic poly (L,D)-alanine beta-helix. Free energy perturbation calculations are performed to obtain the relative affinity of K+ and Cl- for the channel. It is observed that the interior of the gramicidin channel provides an energetically favorable interaction site for a cation but not for an anion. Relative to solvation in bulk water, the carbonyl CO oxygens can provide a favorable interaction to stabilize K+, whereas the amide NH hydrogens are much less effective in stabilizing Cl-. The results of the calculations demonstrate that, as a consequence of the structural asymmetry of the backbone charge distribution, a K+ cation can partition spontaneously from bulk water to the interior of the gramicidin channel, whereas a Cl- anion cannot.  相似文献   

5.
We investigated motor function and pain sensation in the gracile axonal dystrophy (GAD) mutant mouse, using the tail-flick test and the rotarod test. GAD (gad/gad) and normal sib mice (gad/+ or +/+) were used between 5 and 11 weeks of age, during which time the behavioral signs of GAD mice shifted from sensory ataxia (about 4 to 8 weeks of age) to paresis (after about 9 weeks of age). In the tail-flick test, significant shortening of latency was observed at 6 and 8 weeks of age in female GAD mice, in comparison with normal female mice. This may be related to dysfunction or degeneration of axons in the fasiculus gracilis, whose collaterals are thought to control the transmission of nociceptive information. In the rotarod test, a cumulative chi 2 test showed significant reduction in the performance times of GAD mice beginning at 5 and 6 weeks of age in males and females, respectively, indicating that the rotarod test can detect the development of motor incoordination as early as these ages. The performance times of GAD mice dropped sharply from 9 weeks of age onwards, and this is believed to reflect the progression of paresis. The rotarod test therefore appears to be a good method of quantifying behavioral changes in GAD mice and to be applicable both to objective selection of GAD mice before 8 weeks of age and to evaluation of drugs to treat ataxia or paresis.  相似文献   

6.
We present the results of free energy perturbation calculations on binding and catalysis of a tetrapeptide substrate, acetyl-Phe-Ala-Ala-Phe-NMe, by native subtilisin BPN' and a subtilisin BPN' mutant (Thr220----Ala220). The calculated difference in the free energy of binding was 0.70 +/- 0.72 kcal/mol. The calculated difference in the free energy of catalysis was 1.48 +/- 0.89 kcal/mol. These calculated values compare well with the experimental values in which another substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was used. These findings suggest that Thr220 is more important for catalysis than substrate binding.  相似文献   

7.
Serine tRNA gene derivatives with altered anticodons were introduced to the temperature-sensitive serT42 mutant, whose tRNA(1Ser) shows a base substitution of A10 for wild type G10. When a low copy number vector-system was used, the growth and beta-galactosidase synthetic activity of the serT42 mutant were restored by complementation with the tRNA(5Ser) (T34) gene or the tRNA(1Ser) (G34) gene as well as the tRNA(1Ser) (wt) gene, but not with tRNA(5Ser) (wt), tRNA(1Ser) (A34) or tRNA(1Ser) (C34) genes at 42 degrees C. When multicopy vectors were used, the transformation even with tRNA(1Ser) (A10) gene restored the growth and beta-galactosidase synthetic activity at 42 degrees C. The tRNA(1Ser) (A10) showed no thermosensitivity in serine acceptor activity by in vitro assay. At 42 degrees C, the amount of tRNA(1Ser) (A10) in the serT42 mutant was almost the same as those in the wild type. The nucleotides in the tRNA(1Ser) (A10) were found to be fully modified like those in the wild type tRNA(1Ser). Both of the tRNAs transcribed from tRNA(5Ser) (T34) and tRNA(1Ser) (G34) genes showed serine acceptor activity. Modified nucleosides of these tRNAs were also analyzed.  相似文献   

8.
Wnt signaling pathways are involved in embryonic development and adult tissue maintenance and have been implicated in tumorigenesis. Dishevelled (Dvl/Dsh) protein is one of key components in Wnt signaling and plays essential roles in regulating these pathways through protein-protein interactions. Identifying and characterizing Dvl-binding proteins are key steps toward understanding biological functions. Given that the tripeptide VWV (Val-Trp-Val) binds to the PDZ domain of Dvl, we searched publically available databases to identify proteins containing the VWV motif at the C terminus that could be novel Dvl-binding partners. On the basis of the cellular localization and expression patterns of the candidates, we selected for further study the TMEM88 (target protein transmembrane 88), a two-transmembrane-type protein. The interaction between the PDZ domain of Dvl and the C-terminal tail of TMEM88 was confirmed by using NMR and fluorescence spectroscopy. Furthermore, in HEK293 cells, TMEM88 attenuated the Wnt/β-catenin signaling induced by Wnt-1 ligand in a dose-dependent manner, and TMEM88 knockdown by RNAi increased Wnt activity. In Xenopus, TMEM88 protein is sublocalized at the cell membrane and inhibits Wnt signaling induced by Xdsh but not β-catenin. In addition, TMEM88 protein inhibits the formation of a secondary axis normally induced by Xdsh. The findings suggest that TMEM88 plays a role in regulating Wnt signaling. Indeed, analysis of microarray data revealed that the expression of the Tmem88 gene was strongly correlated with that of Wnt signaling-related genes in embryonic mouse intestines. Together, we propose that TMEM88 associates with Dvl proteins and regulates Wnt signaling in a context-dependent manner.  相似文献   

9.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

10.
The cysteine residues of the gamma crystallins, a family of ocular lens proteins, are involved in the aggregation and phase separation of these proteins. Both these phenomena are implicated in cataract formation. We have used bovine gammaB crystallin as a model system to study the role of the individual cysteine residues in the aggregation and phase separation of the gamma crystallins. Here, we compare the thermodynamic and kinetic behavior of the recombinant wild-type protein (WT) and the Cys18 to Ser (C18S) mutant. We find that the solubilities of the two proteins are similar. The kinetics of crystallization, however, are different. The WT crystallizes slowly enough for the metastable liquid-liquid coexistence to be easily observed. C18S, on the other hand, crystallizes rapidly; the metastable coexisting liquid phases of the pure mutant do not form. Nevertheless, the coexistence curve of C18S can be determined provided that crystallization is kinetically suppressed. In this way we found that the coexistence curve coincides with that of the WT. Despite the difference in the kinetics of crystallization, the two proteins were found to have the same crystal forms and almost identical X-ray structures. Our results demonstrate that even conservative point mutations can bring about dramatic changes in the kinetics of crystallization. The implications of our findings for cataract formation and protein crystallization are discussed.  相似文献   

11.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

12.
A recombinant double mutant of hemoglobin (Hb), E6V/L88A(beta), was constructed to study the strength of the primary hydrophobic interaction in the gelation of sickle Hb, i.e., that between the mutant Val-6(beta) of one tetramer and the hydrophobic region between Phe-85(beta) and Leu-88(beta) on an adjacent tetramer. Thus, a construct encoding the donor Val-6(beta) of the expressed recombinant HbS and a second mutation encoding an Ala in place of Leu-88(beta) was assembled. The doubly mutated beta-globin gene was expressed in yeast together with the normal human alpha-chain, which is on the same plasmid, to produce a soluble Hb tetramer. Characterizations of the Hb double mutant by mass spectrometry, by HPLC, and by peptide mapping of tryptic digests of the mutant beta-chain were consistent with the desired mutations. The absorption spectra in the visible and the ultraviolet regions were practically superimposable for the recombinant Hb and the natural Hb purified from human red cells. Circular dichroism studies on the overall structure of the recombinant Hb double mutant and the recombinant single mutant, HbS, showed that both were correctly folded. Functional studies on the recombinant double mutant indicated that it was fully cooperative. However, its gelation concentration was significantly higher than that of either recombinant or natural sickle Hb, indicating that the strength of the interaction in this important donor-acceptor region in sickle Hb was considerably reduced even with such a conservative hydrophobic mutation.  相似文献   

13.
Azurin is a cupredoxin, which functions as an electron carrier. Its fold is dominated by a beta-sheet structure. In the present study, azurin serves as a model system to investigate the importance of a conserved disulphide bond for protein stability and folding/unfolding. For this purpose, we have examined two azurin mutants, the single mutant Cys3Ser, which disrupts azurin's conserved disulphide bond, and the double mutant Cys3Ser/Ser100Pro, which contains an additional mutation at a site distant from the conserved disulphide. The crystal structure of the azurin double mutant has been determined to 1.8 A resolution(2), with a crystallographic R-factor of 17.5% (R(free)=20.8%). A comparison with the wild-type structure reveals that structural differences are limited to the sites of the mutations. Also, the rates of folding and unfolding as determined by CD and fluorescence spectroscopy are almost unchanged. The main difference to wild-type azurin is a destabilisation by approximately 20 kJ x mol(-1), constituting half the total folding energy of the wild-type protein. Thus, the disulphide bond constitutes a vital component in giving azurin its stable fold.  相似文献   

14.
The molecular mechanism for proton conduction in the D-pathway of Cytochrome c Oxidase (CcO) is investigated through the free energy profile, i.e., potential of mean force (PMF) calculations of both the native enzyme and the N98D mutant. The multistate empirical valence bond (MS-EVB) model was applied to simulate the interaction of an excess proton with the channel environment. In the study of the wild type enzyme, the PMF reveals the previously proposed proton trap inside the channel; it also shows a high free energy barrier against the passage of proton at the entry of the channel, where two conserved asparagines (ASN80/98) may be essential for the gating of proton uptake. We also present data from an investigation of the N98D mutant, which has been previously shown to completely eliminate proton pumping but significantly enhance the oxidase activity in Rhodobacter sphaeroides. These results suggest that mutating Asn98 to negatively charged aspartate will create an unfavorable energy barrier sufficiently high to prevent the overall proton uptake through the D-pathway, whereas with a protonated aspartic acid the proton conduction was found to be accelerated. Plausible explanations for the origin of the uncoupling of proton pumping from the oxidase activity will be discussed.  相似文献   

15.
Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters.  相似文献   

16.
The effect of phosphorylation on the shape of tyrosine hydroxylase (TH) was studied directly using gel filtration and indirectly using electrospray ionization mass spectrometry. Phosphorylation of Ser(19) and Ser(40) produced a TH molecule with a more open conformation than the non-phosphorylated form. The conformational effect of Ser(19) phosphorylation is less pronounced than that of the Ser(40) phosphorylation. The effect of Ser(19) and Ser(40) phosphorylation appears to be additive. Binding of dopamine produced a more compact form when compared with the non-dopamine-bound TH. The interdependence of Ser(19) and Ser(40) phosphorylation was probed using electrospray ionization mass spectrometry. The rate constants for the phosphorylation of Ser(19) and Ser(40) were determined by electrospray ionization mass spectrometry using a consecutive reaction model. The rate constant for the phosphorylation of Ser(40) is approximately 2- to 3-fold higher if Ser(19) is already phosphorylated. These results suggest that phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to allow increased accessibility of Ser(40) to kinases.  相似文献   

17.
A cell-free extract of Cephalosporium acremonium (Takeda N-2) was obtained that synthesized the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and also the dipeptide delta-(L-alpha-aminoadipyl)-L-cysteine from the corresponding L-amino acids.  相似文献   

18.
19.
We performed conventional and targeted molecular dynamics simulations to address the dynamic transition mechanisms of the conformational transitions from the GA98 protein with only 1 mutation of Leu45Tyr to GB98 and from the GA88 protein with 7 mutations of Gly24Ala, Ile25Thr, Ile30Phe, Ile33Tyr, Leu45Tyr, Ile49Thr, and Leu50Lys to GB88. The results show that the conformational transition mechanism from the mutated 3α GA98 (GA88) state to the α+4β GB98 (GB88) state via several intermediate conformations involves the bending of loops at the N and C termini firstly, the unfolding of αA and αC, then the traversing of αB, and the formation of the 4β layer with the conversion of the hydrophobic core. The bending of loops at the N and C termini and the formation of the crucial transition conformation with the full unfolded structure are key factors in their transition processes. The communication of the interaction network, the bending directions of loops, and the traversing site of αB in the transition of GA98 to GB98 are markedly different from those in GA88 to GB88 because of the different mutated residues. The analysis of the correlations and the calculated mass center distances between some segments further supported their conformational transition mechanisms. These results could help people to better understand the Paracelsus challenge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In a previous report we described Ser(1275) and Ser(1309) as autophosphorylation sites of the human insulin receptor (IR) tyrosine kinase (TK) in vitro. The question remained whether the observed phosphorylation was exclusive for the in vitro activated receptor or a more general, mechanism of the activated receptor in situ. In this study, we determined the intrinsic activity of the IR to phosphorylate both serine residues in intact cells. For this purpose CHO-09 and NIH-3T3 derived cell-lines expressing the human IR were metabolically labelled with [(32)P]orthophosphate, followed by hormone stimulation of the receptor. The IR was isolated by immunoprecipitation and SDS-PAGE and subsequently analysed for serine phosphorylation by phosphopeptide mapping of HPLC-purified tryptic phosphopeptides. Activation of the IR in the intact cell appeared to result in phosphate incorporation into Ser(1275) and Ser(1309), providing strong evidence that both serine residues are phosphorylation sites of the activated receptor in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号