首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

2.
Human embryonic stem cells(hESCs) can self-renew indefinitely and differentiate into all cell types in the human body.Therefore,they are valuable in regenerative medicine,human developmental biology and drug discovery.A number of hESC lines have been derived from the Chinese population, but limited of them are available for research purposes.Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin.These hESCs express alkaline phosphatase and hE...  相似文献   

3.
Suemori H 《Human cell》2006,19(2):65-70
Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research.  相似文献   

4.
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.  相似文献   

5.
Gerwe BA  Angel PM  West FD  Hasneen K  Young A  Orlando R  Stice SL 《Proteomics》2011,11(12):2515-2527
Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell-based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09-derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose-gradient isolation, 1-D gel electrophoresis followed by in-gel digestion and analysis by reverse phase chromatography coupled to ion trap-FT-ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09-derived human neural progenitor cells from the parent hESC population, and WA09-derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.  相似文献   

6.
Derivation of human embryonic stem cell lines from parthenogenetic blastocysts   总被引:14,自引:1,他引:14  
Mai Q  Yu Y  Li T  Wang L  Chen MJ  Huang SZ  Zhou C  Zhou Q 《Cell research》2007,17(12):1008-1019
  相似文献   

7.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。  相似文献   

8.
Human ES (hES) cell lines are considered to be a valuable resource for medical research and for applications in cell therapy and drug discovery. For such utilization of hES cells to be realized, however, protocols involved in the use of hES cells, such as those for establishment, propagation, and cryopreservation, have still to be improved. Here, we report on an efficient method for the establishment of hES cell lines and its detailed characterization. Additionally, we developed a new bulk-passaging technique that preserves the karyotypic integrity of hES cell lines when maintained in culture for up to 2 years. Finally, we show that a simplified vitrification cryopreservation technique is vastly superior to standard slow-cooling methods with respect to cell viability. These results provide valuable information that will assist in achieving the goal of the large-scale hES cell culture required for the application of hES cells to disease therapy.  相似文献   

9.
Human embryonic stem cells (hESCs) are candidates for many applications in the areas of regenerative medicine, tissue engineering, basic scientific research as well as pharmacology and toxicology. However, use of hESCs is limited by their sensitivity to freezing and thawing procedures. Hence, this emerging science needs new, reliable preservation methods for the long-term storage of large quantities of functional hESCs remaining pluripotent after post-thawing and culturing.Here, we present a highly efficient, surface based vitrification method for the cryopreservation of large numbers of adherent hESC colonies, using modified cell culture substrates. This technique results in much better post-thaw survival rate compared to cryopreservation in suspension and allows a quick and precise handling and storage of the cells, indicating low differentiation rates.  相似文献   

10.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

11.
The potential for derivation of embryonic stem cells in vertebrates   总被引:1,自引:0,他引:1  
An analysis of embryonic stem cell (ESC) derivation in vertebrates has revealed that the potential to form ESC is dependent on the setting aside of a pluripotent lineage from extraembryonic lineages early in development. Derivation of ESCs from all amniotes and also many lower vertebrates with that pattern of lineage allocation is thus predictable. Culture conditions during derivation in all groups share some similar characteristics, most of which are related to retaining potency coupled with extensive proliferative capacity. This in turn probably reflects the environment that maintains and causes the primordial germ cells (PGC) to proliferate in vivo. Hence culture usually involves feeder layers and serum or factors derived from them and the use of small clumps of pluriblast or epiblast cells instead of total dissociation, to facilitate cell-cell signalling. Currently addition of FGF has proven to be important but that of LIF has not been fully explored.  相似文献   

12.
13.
Mouse embryonic stem cells (ESCs) can be induced to form pancreatic exocrine enzyme-producing cells in vitro in a stepwise fashion that recapitulates the development in vivo. However, there is no protocol for the differentiation of pancreatic-like cells from human ESCs (hESCs). Based upon the mouse ESC model, we have induced the in vitro formation of pancreatic exocrine enzyme-producing cells from hESCs. The protocol took place in four stages. In Stage 1, embryoid bodies (EBs) were formed from dissociated hESCs and then treated with the growth factor activin A, which promoted the expression of Foxa2 and Sox17 mRNAs, markers of definitive endoderm. In Stage 2, the cells were treated with all-trans retinoic acid which promoted the transition to cells that expressed gut tube endoderm mRNA marker HNF1b. In Stage 3, the cells were treated with fibroblast growth factor 7 (FGF7), which induced expression of Pdx1 typical of pancreatic progenitor cells. In Stage 4, treatment with FGF7, glucagon-like peptide 1, and nicotinamide induced the expression amylase (AMY) mRNA, a marker for mature pancreatic exocrine cells. Immunohistochemical staining showed the expression of AMY protein at the edges of cell clusters. These cells also expressed other exocrine secretory proteins including elastase, carboxypeptidase A, chymotrypsin, and pancreatic lipase in culture. Production of these hESC-derived pancreatic enzyme-producing cells represents a critical step in the study of pancreatic organogenesis and in the development of a renewable source of human pancreatic-like exocrine cells.  相似文献   

14.
目的 体外建立人胚胎干细胞传代培养方法,研究人胚胎干细胞细胞化学染色特性.方法 以小鼠胚胎成纤维细胞作为饲养层传代培养人胚胎干细胞,检测人胚胎干细胞、自发分化克隆及拟胚体的细胞化学染色特性.结果 人胚胎干细胞在小鼠胚胎成纤维细胞饲养层上传30代以上其形态保持不变;人胚胎十细胞碱性磷酸酶、过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性,自发分化克隆细胞阳性程度明显减弱;人胚胎干细胞形成的拟胚体碱性磷酸酶染色弱阳性,过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性.结论 小鼠胚胎成纤维细胞能支持人胚胎干细胞传代培养,细胞化学染色结果能初步鉴别人胚胎干细胞未分化特性.  相似文献   

15.
16.
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P〉0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.  相似文献   

17.
An automated vision system, TeratomEye, was developed for the identification of three representative tissue types: muscle, gut and neural epithelia which are commonly found in teratomas formed from human embryonic stem cells. Muscle tissue, a common structure was identified with an accuracy of 90.3% with high specificity and sensitivity greater than 90%. Gut epithelia were identified with an accuracy of 87.5% with specificity and sensitivity greater than 80%. Neural epithelia which were the most difficult structures to distinguish gave an accuracy of 47.6%. TeratomEye is therefore useful for the automated identification of differentiated tissues in teratoma sections.  相似文献   

18.
19.
Although both the H1 and HES2 human embryonic stem cell lines (NIH codes: WA01 and ES02, respectively) are capable of forming all three germ layers and their derivatives, various lines of evidence including the need to use different protocols to induce cardiac differentiation hint that they have distinct preferences to become chamber-specific heart cells. However, a direct systematic comparison has not been reported. Here we electrophysiologically demonstrated that the distributions of ventricular-, atrial- and pacemaker-like derivatives were indeed different (ratios = 39:61:0 and 64:33:3 for H1 and HES2, respectively). Based on these results, we hypothesized the differences in their cardiogenic potentials are imprinted in the proteomes of undifferentiated H1 and HES2. Using multiplexing, high-resolution 2-D Differential In Gel Electrophoresis (DIGE) to minimize gel-to-gel variations that are common in conventional 2-D gels, a total of 2000 individual protein spots were separated. Of which, 55 were >2-fold differentially expressed in H1 and HES2 (p < 0.05) and identified by mass spectrometery. Bioinformatic analysis of these protein differences further revealed candidate pathways that contribute to the H1 and HES2 phenotypes. We conclude that H1 and HES2 have predetermined preferences to become ventricular, atrial, and pacemaker cells due to discrete differences in their proteomes. These results improve our basic understanding of hESCs and may lead to mechanism-based methods for their directed cardiac differentiation into chamber-specific cardiomyocytes.  相似文献   

20.
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号