首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of paraquat on the activities of antioxidant defense and detoxifying enzymes of the white-rot fungusFunalia trogii was determined. Paraquat increased the activities of glutathione reductase (GR), glutathione transferase (GT) and superoxide dismutase at 1 mmol/L, while at 0.1 mmol/L it did not affect the activity of GR and GT. It depressed the catalase activity and the amount of glutathione at all concentrations used. Paraquat treatment probably depresses antioxidant defense components such as catalase and glutathione.  相似文献   

2.
The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. The responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. The addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. The white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. The results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

3.
Paraquat action on glutathione reductase activity and intratissue distribution in the liver of intact rats and also in the animals antenatally treated with the given herbicide was studied by some biochemical and histochemical methods. It has been ascertained that paraquat injection into intact animals promotes the increase in the intracellular enzyme level, development of glutathione reductase staining of hepatocyte nuclei, diffuse distribution of the staining along the lobe. In rats antenatally treated with paraquat acute priming does not induce glutathione reductase. In these conditions a mosaic distribution of this enzyme is observed in the hepatic tissue.  相似文献   

4.
The effects of the herbicides 1,1'-dimethyl-4,4'-bipyridylium dichloride (paraquat), 3,6-dichloro-2-metoxybenzoic acid (dicamba) and 2,4-dichlorophenoxyacetic acid (2,4-D) on cell growth of non-green potato tuber calli are described. We attempted to relate the effects with toxicity, in particular the enzymes committed to the cellular antioxidant system. Cell cultures were exposed to the herbicides for a period of 4 weeks. Cellular integrity on the basis of fluorescein release was strongly affected by 2,4-D, followed by dicamba, and was not affected by paraquat. However, the three herbicides decreased the energy charge, with paraquat and 2,4-D being very efficient. Paraquat induced catalase (CAT) activity at low concentrations (1muM), whereas at higher concentrations, inhibition was observed. Dicamba and 2,4-D stimulated CAT as a function of concentration. Superoxide dismutase (SOD) activity was strongly stimulated by paraquat, whereas dicamba and 2,4-D were efficient only at higher concentrations. Glutathione reductase (GR) activity was induced by all the herbicides, suggesting that glutathione and glutathione-dependent enzymes are putatively involved in the detoxification of these herbicides. Paraquat slightly inhibited glutathione S-transferase (GST), whereas 2,4-D and dicamba promoted significant activation. These results indicate that the detoxifying mechanisms for 2,4-D and dicamba may be different from the mechanisms of paraquat detoxification. However, the main cause of cell death induced by paraquat and 2,4-D is putatively related with the cell energy charge decrease.  相似文献   

5.
The protective effects of chlorogenic acid on paraquat-induced oxidative stress were examined in rats. The activities of erythrocytes and liver glutathione peroxidase, and of both liver catalase and glutathione reductase, which were increased by feeding paraquat, declined to the levels in the control rats by supplementing chlorogenic acid to the paraquat diet. The activity of superoxide dismutase was not changed by dietary paraquat or by supplementing chlorogenic acid to the paraquat diet. Paraquat in the diet markedly decreased the liver triacylglycerol and phospholipid concentrations, as well as the food intake and body weight gain, while chlorogenic acid protected against these decreases. These in vivo results and the in vitro superoxide anion scavenging activity of chlorogenic acid suggest that chlorogenic acid acted preventively against paraquat-induced oxidative stress.  相似文献   

6.
Abstract. The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. the responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. the addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. the white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. the results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

7.
Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activity was decreased in all clones, whereas catalase and NADPH reductase activities were not affected. Alterations in glutathione peroxidase and manganese superoxide dismutase activities correlated with increases in copper-zinc superoxide dismutase activity. Whereas all clones were resistant to paraquat, a direct correlation between copper-zinc superoxide dismutase activity and resistance to paraquat did not exist. In agreement with previous reports clones expressing the highest copper-zinc superoxide dismutase activity did not display the highest resistance to paraquat. However, there was a direct correlation between the increase in glutathione peroxidase activity and paraquat resistance (p less than 0.002).  相似文献   

8.
The toxic effects of 10 ppm paraquat in vivo on the enzymes superoxide dismutase (SOD), catalase (C), peroxidase (P), glutathione peroxidase (GSH-Px) and on lipid peroxidation (LP) were estimated in erythrocytes of the carp, the tench and the crucian carp. Paraquat caused activity enhancement of the peroxide metabolism enzymes and increase of the lipid peroxidation in the carp and the crucian carp. The enzyme activities and lipid peroxidation were dependent on the species and on the length of the exposure to paraquat.  相似文献   

9.
The essential mediatory role of copper or iron in the manifestation of paraquat toxicity has been demonstrated (Kohen and Chevion (1985) Free Rad. Res. Commun. 1, 79-88; Korbashi, P. et al. (1986) J. Biol. Chem. 261, 12472-12476). Several liver cell lines, characterized by their resistance to copper, were challenged with paraquat and their cross-resistance to paraquat and copper was studied. Cell growth and survival data showed that copper-resistant cells, containing elevated copper, are more sensitive towards paraquat than wild type cells. Copper-deprived resistant cells did not have this sensitivity. Paraquat was also shown to cause a marked degradation of cellular glutathione in all cell lines. Albeit the fact that the basal glutathione levels are higher in copper-resistant than in wild type cells, there is more paraquat-induced degradation of cellular glutathione (GSH + GSSG) in resistant cells. It is suggested that in copper-resistant cells which contain elevated levels of copper, paraquat-induced cellular injury is potentiated even where glutathione levels are elevated. Additionally, in vitro experiments are presented that support the in vivo findings demonstrating a role for copper in glutathione degradation.  相似文献   

10.
Oxidative stress has been implicated in the pathogenesis of Parkinson disease based on its role in the cascade of biochemical changes that lead to dopaminergic neuronal death. This study analyzed the role of oxidative stress as a mechanism of the dopaminergic neurotoxicity produced by the combined paraquat and maneb model of the Parkinson disease phenotype. Transgenic mice overexpressing either Cu,Zn superoxide dismutase or intracellular glutathione peroxidase and non-transgenic mice were exposed to saline, paraquat, or the combination of paraquat + maneb twice a week for 9 weeks. Non-transgenic mice chronically exposed to paraquat + maneb exhibited significant reductions in locomotor activity, levels of striatal dopamine and metabolites, and dopaminergic neurons in the substantia nigra pars compacta. In contrast, no corresponding effects were observed in either Cu,Zn superoxide dismutase or glutathione peroxidase transgenic mice. Similarly, the increase in levels of lipid hydroperoxides in the midbrain and striatum of paraquat + maneb-treated non-transgenic mice was not detected in either Cu,Zn superoxide dismutase or glutathione peroxidase transgenic mice. To begin to determine critical pathways of paraquat + maneb neurotoxicity, the functions of cell death-inducing and protective mechanisms were analyzed. Even a single injection of paraquat + maneb in the non-transgenic treated group modulated several key pro- and anti-apoptotic proteins, including Bax, Bad, Bcl-xL, and upstream stress-induced cascade. Collectively, these findings support the assertion that protective mechanisms against paraquat + maneb-induced neurodegeneration could involve modulation of the level of reactive oxygen species and alterations of the functions of specific signaling cascades.  相似文献   

11.
Paraquat inhibited the acetylcholinesterase activity of human erythrocytes and electric organs of Electrophorus electricus. The inhibition of acetylcholinesterase activity was reversible, as shown from the following two experimental results: [I] The degree of inhibition was not affected by changing the preincubation time of the enzyme and paraquat before the addition of the substrate. [II] The enzyme, preincubated with paraquat and subsequently freed from inhibitor by gel filtration on Sephadex G-25, showed the same activity as the untreated enzyme. Paraquat gave effective protection against the inhibition by an irreversible anionic site inhibitor, dibenamine, but not by irreversible esteratic site inhibitors, dichlorvos and methanesulfonyl chloride. These results indicate that paraquat functions as a reversible inhibitor for the anionic site. The inhibitory powers and Hill coefficients of paraquat and diquat were compared with the other quaternary ammonium compounds. Although secondary to edrophonium, paraquat strongly inhibited acetylcholinesterases of human erythrocytes and electric eel, and showed higher inhibition selectivity for both acetylcholinesterases than for human plasma butyrylcholinesterase. The Hill coefficients concerning the interaction of paraquat with acetylcholinesterases of human erythrocytes and electric eel were given as 0.83 and 0.73, respectively. This indicates negative cooperativity between these enzymes and paraquat, which is similar to the case with d-tubocurarine. On the other hand, diquat showed weak inhibitory power and low inhibition selectivity, and its Hill coefficients were almost 1.0, indicating a competitive inhibition mode.  相似文献   

12.
A pea glutathione reductase cDNA was expressed in tobacco. Three classes of construct were used which gave a range of elevated levels of glutathione reductase (GR) activity in the cytosol (GR32), chloroplasts (GR36), or in both chloroplasts and mitochondria (GR46). In some transgenic progeny (T2) from self-fertilized GR32 and GR36 primary transformants, having approximately twofold elevation of GR activity as compared with recessive siblings, there was an amelioration of the effect on leaf discs of up to 15 µM paraquat. However, lines with similarly elevated levels of GR activity showed no decreased sensitivity to the herbicide. None of the GR32 and GR36 lines was less sensitive to ozone. Conversely, T2 progeny of GR46 lines, with greater than 4.5-fold elevations of GR activity, showed no reduced sensitivity to paraquat but two out of four of these lines were less sensitive to ozone fumigation. The differential response to stress co-segregated with the presence of the transgene but there was no relationship between the degree of stress response and the level of GR activity. There was an elevation in the total glutathione pool in all lines showing increased GR activity but there was no change in the ratio of oxidized to reduced glutathione. These results demonstrate that the mechanisms of protection against ozone and paraquat are different although both can be mediated by elevated GR activity.  相似文献   

13.
Paraquat is a highly toxic quaternary nitrogen herbicide capable of increasing superoxide anion production. The aim of this research was to evaluate various behavioral changes and study cortical, hippocampal, and striatal mitochondrial function in an experimental model of paraquat toxicity in rats. Paraquat (10 mg/kg ip) was administered weekly for a month. Anxiety-like behavior was evidenced in the paraquat-treated group as shown by a diminished time spent in, and fewer entries into, the open arms of an elevated-plus maze. Also, paraquat treatment induced a deficit in the sense of smell. In biochemical assays, NADH-cytochrome c reductase activity was significantly inhibited by 25 and 34% in cortical and striatal submitochondrial membranes, respectively. Striatal cytochrome oxidase activity was decreased by 24% after paraquat treatment. Also, cortical and striatal mitochondria showed 55 and 74% increased State 4 respiratory rates, respectively. Paraquat treatment decreased striatal State 3 oxygen consumption by 33%. Respiratory controls were markedly decreased in cortical and striatal mitochondria, indicating mitochondrial dysfunction after paraquat treatment, together with mitochondrial depolarization and increased hydrogen peroxide production rates. We demonstrate that paraquat induced alterations in nonmotor symptoms and cortical and striatal mitochondrial dysfunction.  相似文献   

14.
The annual suicide rate in South Korea is the highest among the developed countries. Paraquat is a highly lethal herbicide, commonly used in South Korea as a means for suicide. We have studied the effect of the 2011 paraquat prohibition on the national suicide rate and method of suicide in South Korea. We obtained the monthly suicide rate from 2005 to 2013 in South Korea. In our analyses, we adjusted for the effects of celebrity suicides, and economic, meteorological, and seasonal factors on suicide rate. We employed change point analysis to determine the effect of paraquat prohibition on suicide rate over time, and the results were verified by structural change analysis, an alternative statistical method. After the paraquat prohibition period in South Korea, there was a significant reduction in the total suicide rate and suicide rate by poisoning with herbicides or fungicides in all age groups and in both genders. The estimated suicide rates during this period decreased by 10.0% and 46.1% for total suicides and suicides by poisoning of herbicides or fungicides, respectively. In addition, method substitution effect of paraquat prohibition was found in suicide by poisoning by carbon monoxide, which did not exceed the reduction in the suicide rate of poisoning with herbicides or fungicides. In South Korea, paraquat prohibition led to a lower rate of suicide by paraquat poisoning, as well as a reduction in the overall suicide rate. Paraquat prohibition should be considered as a national suicide prevention strategy in developing and developed countries alongside careful observation for method substitution effects.  相似文献   

15.
Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10-100 microm) was found to cause a 2-4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 microm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.  相似文献   

16.
The role of xanthine oxidase in the mechanism of paraquat toxicity was assessed by in vitro and in vivo experiments. Paraquat stimulated the reduction of cytochrome c by xanthine-xanthine oxidase system in vitro. Paraquat, when added in vitro, stimulated hypoxanthine-dependent superoxide production in the cytosol of rat lung. Tungsten-feeding inhibits xanthine oxidase activity in a variety of tissues in experimental animals. Its therapeutic effect on paraquat intoxication was studied in this paper. In rats fed a tungsten-enriched diet for 5 weeks prior to intraperitoneal injection of 50 mg/kg paraquat dichloride, the mortality decreased significantly compared with rats fed a standard diet. Pretreatment with oxypurinol (1000 mg/kg, s.c.) also ameliorated the paraquat toxicity in rats. We conclude that xanthine oxidase plays an important role in paraquat toxicity and that xanthine oxidase inhibitors may become antidotes for paraquat intoxication.  相似文献   

17.
W Cheng  Y X Fu  J M Porres  D A Ross  X G Lei 《FASEB journal》1999,13(11):1467-1475
Since our prior work indicated that Se-dependent cellular glutathione peroxidase (GPX1) was necessary for protection against paraquat lethality, the present studies were to elucidate the biochemical mechanisms related to that protection. Four groups of mice [Se-deficient or -adequate GPX1 knockout and wild-type (WT)] were injected (i.p.) with 50 mg paraquat/kg body weight and tissues were collected 0, 0.5, 1, 2, 3, or 4 h after the injection. Whereas the ratios of NADPH/NADP and NADH/NAD in lung were reduced by 50-70% only 0.5 h after the injection in all groups, these two ratios in liver of the Se-adequate WT were significantly higher than those of the three GPX1 knockout or deficient groups 2-4 h after the injection. The paraquat-induced pulmonary lipid peroxidation and hepatic protein oxidation, measured as F(2)-isoprostanes and carbonyl contents, respectively, peaked at 1 h in these three groups. No such oxidative events were shown in any tissue of the Se-adequate WT throughout the time course. Whereas the F(2)-isoprostane formation was accelerated by both GPX1 knockout and Se deficiency in liver, it was not significantly elevated by the paraquat treatment in brain of any group. The paraquat injection also resulted in temporal changes in lung GPX activity and GPX1 protein in the Se-adequate WT, and significant reductions in lung total SOD activity in the GPX1 knockout or deficient groups. In conclusion, GPX1 plays a critical role in maintaining the redox status of mice under acute oxidative stress, and protects against paraquat-induced oxidative destruction of lipids and protein in vivo. These protections of GPX1 seem to be inducible and coordinated with those of other antioxidant enzymes.  相似文献   

18.
We treated leaves of winter wheat (Triticum aestivum L.) with cold, paraquat, or 3-amino-1,2,4-triazole and compared the responses. We assayed the activities of glucose-6-phosphate dehydrogenase, catalase, dehydroascorbate reductase and ascorbate free radical reductase and levels of hydrogen peroxide, glucose-6-phosphate, fructose-6-phosphate, ascorbate, dehydroascorbate, reduced and oxidized glutathione. With any of the three treatments, contents of cellular peroxides and hexose phosphates were raised. The content of ascorbate was lowered markedly by paraquat treatment, which produces active oxygen species, whereas such a decrease did not occur in other two treatments. When the plants were treated with 3-amino-1,2,4-triazole, which is a specific inhibitor of catalase, the content of oxidized glutathione increased severalfold. The glucose-6-phosphate dehydrogenase activity increased with all three treatments, but it decreased after glyphosate treatment, which does not stimulate the formation of peroxides. The activities of catalase and dehydroascorbate reductase were increased by the treatment of cold and paraquat, while 3-amino-1,2,4-triazole did not affect the dehydroascorbate reductase activity. The activity of ascorbate free radical reductase increased after treatment by paraquat only.  相似文献   

19.
1. A herbicide, paraquat (1,1'dimethyl-4,4'-bipyridilium-dichloride) was administered to carp in 0.5-10.0 ppm concentrations, respectively, and blood sugar level, glucose-6-phosphatase and glycogen phosphorylase activities of liver were determined. 2. Paraquat treatment caused an increase of blood sugar level and enhanced phosphorylase and glucose-6-phosphatase activities. 3. Paraquat can induce alterations in endoplasmic reticulum that might contribute to the changes in glucose-6-phosphatase activity, resulting in an increase of blood glucose level and/or all the effects can be attributed to a high level of circulating epinephrine produced by paraquat toxicosis.  相似文献   

20.
Toxicity of paraquat to microorganisms.   总被引:1,自引:1,他引:0       下载免费PDF全文
The biochemical response of the microorganisms Lipomyces starkeyi (Lod & Rij), Escherichia coli K-12 W3110, Bacillus subtilis 168 (Marburg) and Pseudomonas sp. strain TTO1 to the presence of growth-inhibitory concentrations of paraquat was studied. Paraquat was added to each culture at a concentration previously determined to reduce the culture growth rate by up to 50%. The changes in activity of a number of enzymes previously shown to be associated with the defense of the mammalian system against the action of paraquat were studied. While the response of E. coli was in agreement with that found in other studies of this microorganism and supports a commonly accepted mechanism for paraquat toxicity, the results obtained with L. starkeyi, B. subtilis, and Pseudomonas sp. strain TTO1 suggest that other mechanisms exist for protection against the toxicity of paraquat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号