首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
The Biolistics® particle delivery system for the transformation of soybean (Glycine max L. Merr.) was evaluated in two different regeneration systems. The first system was multiple shoot proliferation from shoot tips obtained from immature zygotic embryos of the cultivar Williams 82, and the second was somatic embryogenesis from a long term proliferative suspension culture of the cultivar Fayette. Bombardment of shoot tips with tungsten particles, coated with precipitated DNA containing the gene for -glucuronidase (GUS), produced GUS-positive sectors in 30% of the regenerated shoots. However, none of the regenerants which developed into plants continued to produce GUS positive tissue. Bombardment of embryogenic suspension cultures produced GUS positive globular somatic embryos which proliferated into GUS positive somatic embryos and plants. An average of 4 independent transgenic lines were generated per bombarded flask of an embryogenic suspension. Particle bombardment delivered particles into the first two cell layers of either shoot tips or somatic embryos. Histological analysis indicated that shoot organogenesis appeared to involve more than the first two superficial cell layers of a shoot tip, while somatic embryo proliferation occurred from the first cell layer of existing somatic embryos. The different transformation results obtained with these two systems appeared to be directly related to differences in the cell types which were responsible for regeneration and their accessibility to particle penetration.  相似文献   

2.
Summary A biolistic particle gun was used to deliver genetic material into intact yam cells. Cultured suspension cells of D. alata were bombarded with microprojectiles coated with pBI221.2 DNA and histochemical assays were carried out to show transient GUS expression in bombarded cells. Stably transformed D. alata cells were recovered from cultured cells after bombardment with microprojectiles coated with pRT99gus harbouring both the nptII and uidA genes. Bombarded cells were selected on a medium containing geneticin (G418). Two months after bombardment, calli resistant to G418 were assayed for GUS expression. There was a 100% correlation between resistance to G418 and GUS expression. From these calli, four cell lines were established and GUS activity in each line was determined fluorometrically. The use of a specific GUS inhibitor showed that the GUS activity was due to the introduced uidA gene rather than to any intrinsic GUS-like activity originating from the plant. Incorporation of the introduced DNA into the plant genomic DNA was confirmed by Southern analysis.Abbreviations GUS -glucuronidase - MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--D-glucuronide - PVP Polyvinylpyrrolidone - SDS Sodium dodecyl sulphate - TAE Tris-acetate-EDTA buffer - X-Gluc 5-Bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

3.
Gold particles coated with -glucuronidase (GUS) mRNA with a 5 cap structure that had been synthesized in vitro were introduced, by use of a pneumatic particle gun, into pollen grains of lily (Lilium longiflorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana). A fluorometric assay for the GUS activity indicated that in vitro synthesized GUS mRNA introduced into these pollen cells by particle bombardment was successfully expressed. GUS activity in extracts of the bombarded lily pollen became detectable fluorometrically within 30 min after bombardment, peaked at 6 h, then gradually decreased. This activity changed as a function of the developmental stage of the pollen cell of lily.  相似文献   

4.
Particle bombardment and Agrobacterium-mediated DNA delivery into immature embryos and microbulbs were used to investigate the expression of the uidA gene in in vitro onion cultures. Both methods were successful in delivering DNA and subsequent uidA expression was observed. Optimal transient -glucuronidase activity was observed in immature embryos that had been pre-cultured for three days and bombarded at a distance of 3 cm from the stopping plate, under 25 in Hg vacuum, using 900–1300 psi rupture discs. The CaMV35S-uidA gene construct gave five fold higher transient -glucuronidase activity than the uidA gene construct regulated by any of four other promoters initially chosen for high experession in monocotyledonous tissues.Abbreviations GUS -glucuronidase - IE immature embryo - MUG methylumbelliferyl -D-glucuronide  相似文献   

5.
The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and -glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.Abbreviations GUS -glucuronidase - HPT hygromycin phosphotransferase - bar phosphinothricin acetyl transferase gene - PPT phosphophinothricin - NAA naphthalene acetic acid - 2iP 2-isopentenyl adenine  相似文献   

6.
Summary The effects of osmotic conditioning on both transient expression and stable transformation were evaluated by introducing plasmid DNAs via particle bombardment into embryogenic suspension culture cells of Zea mays (A188 × B73). Placement of cells on an osmoticum-containing medium (0.2 M sorbitol and 0.2 M mannitol) 4 h prior to and 16 h after bombardment resulted in a statistically significant 2.7-fold increase in transient ß-glucuronidase expression. Under these conditions, an average of approximately 9,000 blue foci were obtained from 100 l packed cell volume of bombarded embryogenic tissue. Osmotic conditioning of the target cells resulted in a 6.8-fold increase in recovery of stably transformed maize clones. Transformed fertile plants and progeny were obtained from several transformed cell lines. We believe the basis of osmotic enhancement of transient expression and stable transformation resulted from plasmolysis of the cells which may have reduced cell damage by preventing extrusion of the protoplasm from bombarded cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PCV packed cell volume - GUS ß-glucuronidase - NOS nopaline synthase - PIG Particle Inflow Gun - PPT phosphinothricin. Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC, USDA-ARS and Nickerson BIOCEM Ltd. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC or USDA, and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No. 177-92  相似文献   

7.
Summary Embryogenic suspension culture tissue of soybean (Glycine max Merrill.) was bombarded with particles coated with plasmid DNAs encoding hygromycin resistance andβ-glucuronidase (GUS). One to two weeks after bombardment, embryogenic tissue was placed in a liquid proliferation medium containing hygromycin. Four to six weeks after bombardment, lobes of yellow-green, hygromycin-resistant tissue, which began as outgrowths on brown clumps of hygromycin-sensitive tissue, were isolated and cultured to give rise to clones of transgenic embryogenic material. In vivo GUS assays of hygromycin-resistant clones showed that the early outgrowths could be negative, sectored, or positive for GUS activity. Transgenic, fertile plants could be routinely produced from the proliferating transgenic embryogenic clones. Southern hybridization analyses confirmed stable transformation and indicated that both copy number and integration pattern of the introduced DNA varied among independently transformed clones. Hybridization analysis of DNA from progeny plants showed genetic linkage of multiple copies of introduced DNA. An average of three transgenic clones were obtained per bombardment making this procedure very suitable for transformation of soybean.  相似文献   

8.
Tissue derived from embryogenic suspension cultures of cassava was bombarded with microparticles coated with a plasmid containing theuidA gene, which codes for-glucuronidase (GUS). After 3 days, the effect of different bombardment parameters was evaluated by comparing the numbers of blue spots that resulted from histological GUS assays. Counting of blue spots was performed using a system comprised of a black and white video camera, a stereoscope and a personal computer. A reproducible counting method was established by optimizing GUS assay conditions, preparation of tissue samples and acquisition of video images in view of attaining the highest possible contrast between the blue spots and the surrounding tissue. The effects of bombardment pressure, microparticle size, number of bombardments, and osmotic pretreatment on GUS expression were investigated. Optimal transient expression of theuidA gene was observed after bombardment at 1100 psi, with a particle size of 1 µm, an osmotic pretreatment and two bombardments per sample. The highest number of blue spots observed was 2400 per square centimeter of bombarded tissue.  相似文献   

9.
Development of the Particle Inflow Gun   总被引:7,自引:0,他引:7  
A simple and inexpensive particle acceleration apparatus was designed for direct delivery of DNA to plant cells. The Particle Inflow Gun (PIG) is based on acceleration of DNA-coated tungsten particles directly in a helium steam. High levels of transient expression of theβ-glucuronidase gene were obtained following bombardment of embryogenic suspension cultures of maize and soybean, and leaf tissue of cowpea. Stable transformation of soybean and maize has also been obtained using this bombardment apparatus.  相似文献   

10.
An optimised bombardment protocol to introduce DNA into Coffea arabica suspension culture cells was developed. Osmotic preconditioning of cells and physical bombardment parameters including Helium pressure, gap and target distances affecting DNA delivery were evaluated by monitoring transient expression of the uidA gene driven by the CaMV35S promoter. The highest transient GUS expression was obtained when cells were subjected to a 0.5 M mannitol–sorbitol pre-treatment 4 h prior to bombardment and a Helium pressure of 1550 psi, a 9-mm gap distance and 12 cm target distance as physical bombardment parameters. The optimised protocol was tested with two coffee promoters: -tubulin and arabicin, which presented similar activity to the CaMV35S promoter in suspension culture cells by fluorometric GUS assays. GUS expression was reduced in bombarded tissue culture leaves, and only the CaMV35S and arabicin promoters showed histochemical activity in coffee endosperms. This is the first report of optimization of particle bombardment on coffee suspension culture cells, equivalent CaMV35S activity for a coffee promoter and transient -glucoronidase expression in coffee endo-sperms.  相似文献   

11.
A simple particle bombardment device was designed, constructed and shown to be efficient for the delivery of DNA into plant cells. High levels of transient -glucuronidase expression were observed in alfalfa suspension-cultured cells and embryogenic soybean suspension-cultured cells. Expression of -glucuronidase in alfalfa suspension-cultured cells was used to optimize the bombardment conditions for the device. Transient gene expression in alfalfa was found to be dependent on the state of the target tissue, the size of particles employed, the helium pressure used to accelerate the particles and the distance travel led by the tungsten particles carrying DNA.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - MS Murashige & Skoog (1962) medium  相似文献   

12.
Transgenic plants were obtained after particle bombardment of embryogenic callus derived from stem segments of two tetraploid Alstroemeria genotypes with plasmids containing different selection/reporter genes. Firstly, a plasmid containing a firefly luciferase reporter gene driven by the maize ubiquitin promoter (Ubi1), was bombarded into both friable embryogenic callus and proembryos. Transient and stable expression of luciferase was visually detected by a luminometer. This selection method is non-destructive and can be applied over the whole developmental process from callus to embryo and plantlet. Molecular proof of transformation was obtained both by PCR analysis and Southern hybridization. Secondly, a plasmid containing the bar gene together with an uidA gene coding for -glucuronidase both driven by the Ubi1 promoter was bombarded into proembryos. The transgenic callus was effectively selected from the callus clumps four months after bombardment on a medium containing 5 mg/l phosphinotricin (PPT). Selection by PPT was efficient and labour-saving. Stable expression of GUS was confirmed by the histochemical staining assay and molecular proof was obtained by PCR analysis.  相似文献   

13.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

14.
Development of the particle inflow gun for DNA delivery to plant cells   总被引:15,自引:7,他引:8  
Summary A simple and inexpensive particle bombardment device was constructed for delivery of DNA to plant cells. The Particle Inflow Gun (PIG) is based on acceleration of DNA-coated tungsten particles using pressurized helium in combination with a partial vacuum. The particles are accelerated directly in a helium stream rather than being supported by a macrocarrier. Bombardment parameters were partially optimized using transient expression assays of a ß-glucuronidase gene in maize embryogenic suspension culture and cowpea leaf tissues. High levels of transient expression of the ß-glucuronidase gene were obtained following bombardment of embryogenic suspension cultures of corn and soybean, and leaf tissue of cowpea. Stable transformation of embryogenic tissue of soybean has also been obtained using this bombardment apparatus.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PCV packed cell volume - GUS ß-glucuronidase - NOS nopaline synthase Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC and USDA-ARS. Mention of trademark of proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC or USDA, and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No. 34-92  相似文献   

15.
Bialaphos selection of stable transformants from maize cell culture   总被引:15,自引:0,他引:15  
Summary Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for -glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.  相似文献   

16.
Transformation of cotton (Gossypium hirsutum L.) via particle bombardment   总被引:1,自引:0,他引:1  
Embryogenic suspension cultures of cotton (Gossypium hirsutum L.) were subjected to particle bombardment, where high density particles carrying plasmid DNA were accelerated towards the embryogenic plant cells. The plasmid DNA coating the particles encoded hygromycin resistance. One to two weeks following bombardment, embryogenic cotton cells were placed in proliferation medium containing 100 g/ml hygromycin. Clumps of tissue which grew in the presence of hygromycin were subcultured at low density into fresh hygromycin-containing proliferation medium. Following sequential transfer of embryogenic tissue to development and then germination media, plants were recovered from transgenic embryogenic tissue. Southern hybridization confirmed the presence of the hygromycin resistance gene in embryogenic suspension culture tissue and regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - Aph IV aminoglycoside phosphotransferase type IV Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC and USDA-ARS. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC or USDA, and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No. 354-89  相似文献   

17.
Transient GUS (-glucuronidase) expression was visualized in whole and sectioned embryos of Pennisetum glaucum (L.) R. Br. (pearl millet) after microprojectile bombardment with pMON 8678 DNA. Strongest GUS expression occurred in cells located in the center of GUS positive spots with decreasing intensity in surrounding cells. GUS positive cells could be seen up to 12 cell layers beneath the epidermis. Needle-like crystals of the GUS assay product were found throughout the cytoplasm of GUS positive cells. The number of GUS positive spots was correlated to the microprojectile spread pattern on the medium surface. Shorter bombardment distances (6.6 and 9.8 cm) and the standard accelerator speed gave the best results for transient expression but also caused maximum tissue damage. The speed and distance, however, had little influence on the ability of bombarded embryos to form compact callus. The developmental stage of the bombarded immature embryos was the determining factor in the formation of compact callus, from which plants were regenerated.  相似文献   

18.
Stable transformation of papaya via microprojectile bombardment   总被引:27,自引:0,他引:27  
Summary Stable transformation of papaya (Carica papaya L.) has been achieved following DNA delivery via high velocity microprojectiles. Three types of embryogenic tissues, including immature zygotic embryos, freshly explanted hypocotyl sections, and somatic embryos derived from both, were bombarded with tungsten particles carrying chimeric NPTII and GUS genes. All tissue types were cultured prior to and following bombardment on half-strength MS medium supplemented with 10 mg 1–1 2,4-D, 400 mg 1–1 glutamine, and 6% sucrose. Upon transfer to 2,4-D-free medium containing 150 mg 1–1 kanamycin sulfate, ten putative transgenic isolates produced somatic embryos and five regenerated leafy shoots. Leafy shoots were produced six to nine months following bombardment. Tissues from 13 of these isolates were assayed for NPTII activity, and 10 were positive. Six out of 15 isolates assayed for GUS expression were positive. Three isolates were positive for both NPTII and GUS,Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - X-gluc 5-Br-4-Cl-3-indolyl--D-glucuronic acid - CaMV cauliflower mosaic virus - NOS nopaline synthase - NPTII neomycin phosphotransferase II Journal Series no. 3448 of the Hawaii Institute of Tropical Agriculture and Human Resources  相似文献   

19.
Stably transformed callus of a hybrid sugarcane cultivar (Saccharum species hybrid, CP72-1210) was achieved following high velocity microprojectile bombardment of suspension culture cells, and electroporation of protoplasts. A three-day old cell suspension culture (SC88) was bombarded with gold particles coated with pBARGUS plasmid DNA containing the ß-glucuronidase (GUS) reporter gene and the bar selectable gene that confers resistance to the herbicide basta. The pBARGUS plasmid was also electroporated into the protoplasts of another cell line (SCPP). Colonies resistant to basta were recovered from both sources. Stable integration of the bar gene in the resistant cell lines was confirmed by Southern analysis. In addition, phosphinothricin acetyltransf erase (PAT) activity was also demonstrated in the transformed cell lines.Abbreviations GUS ß-glucuronidase - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP benzylaminopurine - PMSF phenylmethylsulfonyl fluoride - MES 2[N-Morpholino]ethanesulfonic acid - HEPES [N-2-hydroxyethyl] piperazine-N-[2-ethane sulfonic acid] - PAT Phosphinothricin acetyltransferase - CTAB cetyltrimethylammonium bromide  相似文献   

20.
Microprojectile- or Agrobacterium-mediated DNA delivery into calluses initiated from immature embryos has proven to be effective in transforming wheat. Yet, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process. To circumvent these limitations, we propose an alternative technique applying the particle bombardment technology to calluses derived from fragmented mature embryos rather than immature tissues. The phosphinothricin acetyl transferase (bar) and -glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimise the performance of the proposed technique. Primary requirement for genetic transformation method development, the regeneration capacity of bombarded calluses was established. A preculture duration of 6 days was identified as optimal for DNA uptake and -glucuronidase (GUS) expression. The highest activity was recorded when calluses were selected. Long-term GUS expression studies (1–7weeks subsequent to bombardment), showed differentiated behaviours for tissues obtained from mature versus immature embryos. Notably, mature embryos exhibited the greatest number of cells stably expressing the reporter gene, thus providing an excellent source material for developing a stable transformation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号