首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.  相似文献   

2.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

3.
基质金属蛋白酶   总被引:42,自引:0,他引:42  
基质金属蛋白酶是一类分解细胞外基质组分的锌蛋白酶⒚它们在有机体生长发育中的细胞外基质逆转与重塑以及疾病中的病理损害起着极为重要的作用⒚基质金属蛋白酶的表达和活性在不同细胞水平受到严密调控,如细胞因子、生长因子以及激素的调节⒚基质金属蛋白酶以酶原形式分泌,随后被其它蛋白酶如胞浆素或非蛋白酶类化学物质如有机汞所激活⒚所有基质金属蛋白酶都受到天然抑制剂 金属蛋白酶组织抑制剂所抑制⒚两者的不平衡导致许多疾病的发生,如肿瘤侵入及转移⒚合成基质金属蛋白酶组织抑制剂所抑制,如 M arim astat 能控制肿瘤转移的发生及进一步扩散⒚本文将对基质金属蛋白酶的特征、分子区域结构、底物特性、激活机制、调控方式等方面进行最新概述⒚  相似文献   

4.
It is increasingly evident that matrix metalloproteinases (MMPs), a family of zinc containing extracellular endopeptidases, participate in processes supporting hippocampal synaptic plasticity. The purpose of this study was to further the understanding of MMPs involvement in hippocampal plasticity. Acute hippocampal slices, generated from 20- to 30-day-old male Sprague-Dawley rats, were subjected to various electrophysiologic stimulatory paradigms to produce either short-term or long-term modifications to synaptic efficacy. Slices exposed to broad-spectrum MMP inhibitor, FN-439, exhibited impairments in paired-pulse facilitation, theta-burst facilitation, and long-term depression. Additionally, we observed that MMP inhibition impaired both the induction and stability of long-term potentiation (LTP). Furthermore, evidence indicated that the effect of MMP inhibition on LTP maintenance is dependent upon integrin-directed adhesion, whereas the effects of MMP inhibition on LTP induction are independent of integrin-directed adhesion. Together, these data support a generalized role for MMPs in short-term and long-term hippocampal plasticity and indicate that MMPs are a necessary facet of integrin-mediated cell adhesion supporting LTP stabilization.  相似文献   

5.
Role of matrix metalloproteinases in melanoma cell invasion   总被引:11,自引:0,他引:11  
Cutaneous melanomas are notorious for their tendency to metastasize. Essential steps in this process are the degradation of basement membranes and remodeling of the extracellular matrix (ECM) by proteolytic enzymes such as matrix metalloproteinases (MMPs), which are regulated by their tissue inhibitors (TIMPs). An MMP expression is not restricted to tumor cells but is also found in stromal cells, indicating that stroma-derived proteases may contribute to melanoma progression. The MMPs have been shown to interact with a broad range of non-matrix proteins including adhesion molecules, growth factors and mediators of angiogenesis and apoptosis. In this review, we evaluate new insights into the interplay of MMPs and their molecular partners in melanoma progression.  相似文献   

6.
7.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.Key words: matrix metalloproteinases, skeletal muscle satellite cells, migration, differentiation, regeneration, fibrosis  相似文献   

8.
The tissue inhibitor of the metalloproteinase-3 (TIMP-3) gene was isolated as a gene involved in the process of ascorbate-induced differentiation of mouse MC3T3-E1 cells by the differential display method. The functional roles of TIMP-3 were characterized by establishing stable cell lines, which constitutively expressed the TIMP-3 gene. The TIMP-3 transfectants produced type I collagen at the same level as that of normal cells in response to ascorbic acid 2-phosphate (AscP). However, the expression of the other osteoblastic marker proteins such as alkaline phosphatase (ALPase), osteopontin (OP), osteocalcin (OC), osteonectin (ON) and matrix metalloproteinases (MMPs) remained at a low level even in the presence of AscP. Furthermore, no mineralization of the extracellular matrix (ECM) occurred with the transfectants. Remodeling ECM through TIMPs and MMPs is concluded to be required for osteoblastic differentiation.  相似文献   

9.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which can synergistically degrade the major components of extracellular matrix (ECM). A key role in maintaining the balance between ECM deposition and degradation in several physio-pathological processes is carried out, through multiple biological functions, by four members of the tissue inhibitors of metalloproteinases (TIMPs) family. TIMP-1 and TIMP-2 are capable of inhibiting the activities of MMPs, can inhibit tumour growth, invasion and metastasis, exhibit growth factor-like activity, can inhibit angiogenesis and suppress programmed cell death (PCD) independently of the MMP-inhibitory activity. TIMP-3 is the only member which is tightly bound to ECM, inhibits TNF- converting enzyme and induces PCD through the stabilization of TNF- receptors on the cell surface. TIMP-4 plays a role in ECM homeostasis in a tissue-specific fashion and its overexpression induces PCD. The aim of this article is to review the exciting and intriguing literature on TIMPs, with special emphasis on their conflicting-paradoxical roles in PCD and their potential clinical usefulness.  相似文献   

10.
Mycobacterium tuberculosis (Mtb) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF‐κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB‐associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front‐line anti‐TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well‐tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.  相似文献   

11.
Matrix metalloproteinases (MMPs) are a gene family of neutral proteases involved in normal and pathological processes in the central nervous system (CNS). Normally released into the extracellular space, MMPs break down the extracellular matrix (ECM) to allow cell growth and to facilitate remodeling. Proteolysis becomes pathological when the normal balance between the proteases and their inhibitors, tissue inhibitors to metalloproteinases (TIMPs), is lost. Cancer cells secrete neutral proteases to facilitate spread through the ECM. MMPs increase capillary permeability, and they have been implicated in demyelination. Neurological diseases, such as brain tumors, multiple sclerosis, Guillain-Barré, ischemia, Alzheimer's disease, and infections, lead to an increase in the matrix-degrading proteases. Two classes of neutral proteases have been extensively studied, namely the MMPs and the plasminogen activators (PAs), which act in concert to attack the ECM. After proteolytic injury occurs, the process of ECM remodeling begins, which can lead to fibrosis of blood vessels and gliosis. TIMPs are increased after the acute injury and may add to the fibrotic buildup of ECM components. Thus, an imbalance in proteolytic activity either during the acute injury or in recovery may aggravate the underlying disease process. Agents that affect the proteolytic process at any of the regulating sites are potentially useful in therapy.  相似文献   

12.
In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure. There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403–410, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Liver fibrosis is characterized by activation of hepatic stellate cells, which are then involved in synthesis of matrix proteins and in regulating matrix degradation. In the acute phases of liver injury and as liver fibrosis progresses, there is increased expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Among the changes described, striking features include increased expression of gelatinase A (MMP-2) and membrane type 1-MMP (MT(1)-MMP; MMP-14) as well as TIMP-1 and TIMP-2. These molecules and other family members are involved in regulating degradation of both normal and fibrotic liver matrix. This article outlines recent progress in this field and discusses the mechanisms by which MMPs and TIMPs may contribute to the progression and regression of liver fibrosis. Recently described properties of MMPs and TIMPs of relevance to the pathogenesis of liver fibrosis are outlined. The proposal that regression of liver fibrosis is mediated by decreased expression of TIMPs and involves degradation of fibrillar collagens by a combination of MT(1)-MMP and gelatinase A, in addition to interstitial collagenase, is explored.  相似文献   

14.
Extracellular matrix (ECM) molecules are known to play a pivotal role in morphogenesis of the secondary palate, and changes in their composition and distribution, not attributable to changes in synthesis, are known to occur during palatogenesis. The present study was undertaken to determine if the enzymes responsible for mediating their degradation, the matrix metalloproteinases (MMP), and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMP), are temporospatially regulated during murine palatal shelf morphogenesis. Palatal shelves were harvested at gestational days (gd) 12, 13 and 14. MMPs were identified by gelatin zymography, with and without inhibitors, and the identity of specific bands confirmed by Western blot analysis. TIMPs were identified by reverse zymography. MMP and TIMP messages were detected using RT-PCR with specific primers to MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2. Zymography revealed bands of molecular weights corresponding to MMPs 2, 7, 9 and 13 at all ages examined; the intensity of these bands increased with developmental age. Western blot analysis established the presence of MMP-3 and its developmental variation in expression. RT-PCR demonstrated the presence of mRNA for all MMPs and TIMP at all sampling times and all but MMP-2 showed developmental variation. Whereas increases in mRNA were detected for MMPs 3, 9, and 13, MMP-7 mRNA decreased between gd 12 and 14. The results of this study demonstrate that MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2 and their messages are present during the course of palatal shelf remodelling and that their expression is temporally regulated.  相似文献   

15.
16.
The occurrence of metastasis is a serious risk for renal cell carcinoma (RCC) patients. In order to develop novel therapeutic approaches to control the progression of metastatic RCC, it is of urgent need to understand the molecular mechanisms underlying RCC metastasis and identify prognostic markers of metastatic risk. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been known to be closely associated with extracellular matrix (ECM) turnover, which plays a highly active role in tumor metastasis. Recent studies have shown that immunophilin FK-506-binding protein 51 (FKBP51) may be important for the regulation of ECM function, and exert effects on the invasion and migration of tumor cells. However, the mechanisms underlying these activities remain unclear. The present study detected the role of FKBP51 in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC, and found that FKBP51 significantly promotes ccRCC invasion and migration by binding with the TIMP3, connecting TIMP3 with Beclin1 complex and increasing autophagic degradation of TIMP3. Given the important roles that TIMPs/MMPs play in ECM regulation and remodeling, our findings will provide new perspective for future investigation of the regulation of metastasis of kidney cancer and other types of cancer.Subject terms: Renal cell carcinoma, Extracellular matrix  相似文献   

17.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

18.
Glucocorticoids (GCs) are used in the treatment of neuroinflammatory diseases such as multiple sclerosis. Several studies have demonstrated the beneficial effect of GCs on the balance between matrix metalloproteinases (MMPs) and their endogenous inhibitors, the TIMPs (tissue inhibitors of metalloproteinases). We could demonstrate that all four known TIMPs are present at the blood-brain barrier (BBB) endothelium. Hydrocortisone (HC) selectively upregulates TIMP-3 while TIMP-1, TIMP-2 and TIMP-4 were downregulated on the mRNA-level. This effect could be completely reversed by the glucocorticoid receptor inhibitor mifepristone (Mife). On the protein-level all TIMPs could be detected in the apical supernatants whereas in the isolated extracellular matrix (ECM) only TIMP-3 was found. The application of HC led to a strong enrichment of TIMP-3 in the ECM. Our findings demonstrate that HC directly targets TIMP-3 at the BBB assuming a protective role against matrix disruption and thus to guarantee the barrier integrity.  相似文献   

19.
Appropriate matrix formation, turnover and remodeling in tissue-engineered small diameter vascular conduits are crucial requirements for their long-term patency and function. This complex process requires the deposition and accumulation of extracellular matrix molecules as well as the remodeling of this extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). In this study, we have investigated the dynamics of ECM production and the activity of MMPs and TIMPs in long-term tissue-engineered vascular conduits using quantitative ECM analysis, substrate gel electrophoresis, radiometric enzyme assays and Western blot analyses. Over a time period of 169 days in vivo, levels of elastin and proteoglycans/glycosaminoglycans in tissue-engineered constructs came to approximate those of their native tissue counter parts. The kinetics of collagen deposition and remodeling, however, apparently require a much longer time period. Through the use of substrate gel electrophoresis, proteolytic bands whose molecular weight was consistent with their identification as the active form of MMP-2 (approximately 64--66 kDa) were detected in all native and tissue-engineered samples. Additional proteolytic bands migrating at approximately 72 kDa representing the latent form of MMP-2 were detected in tissue-engineered samples at time points from 5 throughout 55 days. Radiometric assays of MMP-1 activity demonstrated no significant differences between the native and tissue-engineered samples. This study determines the dynamics of ECM production and turnover in a long-term tissue-engineered vascular tissue and highlights the importance of ECM remodeling in the development of successful tissue-engineered vascular structures.  相似文献   

20.
The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is largely responsible for the remodeling of tissues. Deregulation of this balance is a characteristic of extensive tissue degradation in certain degenerative diseases. To analyze the role of MMPs and TIMPs in tissue remodeling under normal and pathological conditions, it is important to have reliable detection methods. This review will focus on zymographical techniques for the analysis of MMPs and TIMPs. MMPs can be analyzed with several zymographical techniques, but substrate zymography is the most commonly used. This technique identifies MMPs by the degradation of their preferential substrate and by their molecular weight. Several substrates that can be used for zymography are described. Reverse zymography, which detects TIMPs by their ability to inhibit MMPs, is also discussed. Finally, in situ zymography is described, which is used to localize MMPs in tissue sections. Common problems encountered during sample preparation, zymography itself and the data analysis are discussed. Hints are given to improve the sensitivity and accuracy of zymographical methods. In conclusion, zymography is a valuable tool for research purposes and for the development of new diagnostic techniques and therapies for pathological conditions such as rheumatoid and osteoarthritis, and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号