首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic model for K+, H+, Ca2+ concentrational self-oscillations in erythrocytes induced by A23187 and FCCP ionophores are considered. The model is based on the experimental data available and contains the minimal number of essential variables. The model was analysed by the method based on the graph representation of kinetic equations. The critical graph fragments provoking self-oscillatory trajectories in the system were revealed. It is shown that self-oscillatory behaviour is basically induced by conjugated processes produced by A23187. The parameter domain for self-oscillations is estimated including parameters of Ca2+-induced (through K+-channels) proton transport with FCCP participation. Numerical integration of kinetic equations was performed. The results obtained are in a good qualitative agreement with experimental data.  相似文献   

2.
The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha (cPLA2-alpha), protein kinase C-beta (PKC-beta), and synaptotagmin-IA (Syt-IA). The results show that equilibrium C2 domain docking to mixed phosphatidylcholine and phosphatidylserine membranes occurs at micromolar Ca2+ concentrations for the cPLA2-alpha C2 domain, but requires 3- and 10-fold higher Ca2+ concentrations for the PKC-beta and Syt-IA C2 domains ([Ca2+](1/2) = 4.7, 16, 48 microM, respectively). The Ca2+ triggered membrane docking reaction proceeds in at least two steps: rapid Ca2+ binding followed by slow membrane association. The greater Ca2+ sensitivity of the cPLA2-alpha domain results from its higher intrinsic Ca2+ affinity in the first step compared to the other domains. Assembly and disassembly of the ternary complex in response to rapid Ca2+ addition and removal, respectively, require greater than 400 ms for the cPLA2-alpha domain, compared to 13 ms for the PKC-beta domain and only 6 ms for the Syt-IA domain. Docking of the cPLA2-alpha domain to zwitterionic lipids is triggered by the binding of two Ca2+ ions and is stabilized via hydrophobic interactions, whereas docking of either the PKC-beta or the Syt-IA domain to anionic lipids is triggered by at least three Ca2+ ions and is maintained by electrostatic interactions. Thus, despite their sequence and architectural similarity, C2 domains are functionally specialized modules exhibiting equilibrium and kinetic parameters optimized for distinct Ca2+ signaling applications. This specialization is provided by the carefully tuned structural and electrostatic parameters of their Ca2+ and membrane-binding loops, which yield distinct patterns of Ca2+ coordination and contrasting mechanisms of membrane docking.  相似文献   

3.
Plasma membrane Ca2+-ATPase is the calcium pump that extrudes calcium ions from cells using ATP hydrolisis for the maintenance of low Ca2+ concentrations in the cell. Calmodulin stimulates Ca2+-ATPase by binding to the autoinhibitory enzyme domain, which allows the access of cytoplasmic ATP and Ca2+ to the active and transport cites. Our kinetic model predicts damped oscillations in the enzyme activity and interprets the known nonmonotonous kinetic behavior of the enzyme in the presence of calmodulin. For the parameters close to the experimental ones, the kinetic model explains the changes in frequency and damping factor of the oscillatory enzyme activity, as dependent on calmodulin concentration. The calculated pre-steady-state curves fit well the known experimental data. The kinetic analysis allows us to assign Ca2+-ATPase to the hysteretic enzymes exhibiting activity oscillations in open systems.  相似文献   

4.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

5.
Currently available information on properties and regulation of mitochondrial Ca2+ transporting systems in eukaryotic cells is summarized. We describe in detail kinetic properties and effects of inhibitors and modulators on the energy-dependent Ca2+ uptake through the Ca2+ uniporter, as well as on Na+-dependent and Na+-independent pathways for Ca2+ release in mammalian mitochondria. Special emphasis is placed on Ca2+ transport systems (for ion uptake and release) in mitochondria of higher plants, algae, and yeasts. Potential physiological implications of mitochondrial Ca2+ fluxes (influx and efflux), e.g., regulation of activity of Ca2+-dependent enzymes of the Krebs cycle, maintaining of cellular Ca2+ homeostasis, and engagement in pathophysiological processes, are discussed.  相似文献   

6.
Effects of endotoxin administration on the biological activity of calmodulin isolated from canine heart and liver were studied. Calmodulin was isolated and purified to homogeneity. The biological activity of calmodulin was determined by its ability to activate Ca(2+)-dependent phosphodiesterase. Results obtained 4 h after endotoxin administration show that the Vmax and A0.5 for calmodulin, the Vmax and Km for cAMP, and the Vmax and the Hill coefficient for Ca2+ were unchanged, while the S0.5 for Ca2+ for the activation of phosphodiesterase were significantly increased in the heart. The kinetic parameters as described above were not significantly altered in the liver. These data indicate that the biological activity of calmodulin is inhibited in the heart during endotoxin shock and that the nature of inhibition is associated with a mechanism involving a decrease in the affinity (1/S0.5) towards Ca2+ binding. Since calmodulin plays an important role in the regulation of cardiac function through calmodulin-dependent calcium transport systems, our findings may have a pathophysiological significance in contributing to the understanding of myocardial dysfunction in endotoxin shock.  相似文献   

7.
A model simulating oscillations in glycolysis was formulated in terms of nonequilibrium thermodynamics. In the kinetic rate equations every metabolite concentration was replaced with an exponential function of its chemical potential. This led to nonlinear relations between rates and chemical potentials. Each chemical potential was then expanded around its steady-state value as a Taylor series. The linear (first order) term of the Taylor series sufficed to simulate the dynamic behavior of the system, including the damped and even sustained oscillations at low substrate input or high free-energy load. The glycolytic system is autocatalytic in the first half. Because oscillations were obtained only in the presence of that autocatalytic feed-back loop we conclude that this type of kinetic nonlinearity was sufficient to account for the oscillatory behavior. The matrix of phenomenological coefficients of the system is nonsymmetric. Our results indicate that this is the symmetry property and not the linearity of the flow-force relations in the near equilibrium domain that precludes oscillations. Given autocatalytic properties, a system exhibiting liner flow-force relations and being outside the near equilibrium domain may show bifurcations, leading to self-organized behavior.  相似文献   

8.
Vanadate and vanadyl have many insulin-mimetic effects on cellular metabolism and also have been shown to alter cellular Ca2+ fluxes. In this report, vanadate and vanadyl, like insulin, are shown to inhibit the plasma membrane (Ca2+ + Mg2+)-ATPase/Ca2+ transport system as well as Ca2+ transport by endoplasmic reticulum from rat adipocytes. Ca2+ transport by the endoplasmic reticulum was inhibited half-maximally (I50) by vanadate and vanadyl at concentrations of 30 and 33 microM, respectively. Inhibition of the plasma membrane Ca2+ transport by vanadate and vanadyl was less sensitive, with I50 values of 144 and 92 microM, respectively. These I50 values for plasma membrane Ca2+ transport were similar when measured under conditions of calmodulin-stimulated and non-calmodulin-stimulated Ca2+ transport. The predominant effect of both ions on the kinetic parameters of Ca2+ transport was a substantial decrease in the Vmax by 43-46% for both transport systems. An increase in intracellular Ca2+ following the inhibition of the (Ca2+ + Mg2+)-ATPase/Ca2+ pump in the plasma membrane and endoplasmic reticulum by these vanadium ions may result, at least in part, in the observed insulin-mimetic alterations in cellular metabolism.  相似文献   

9.
The requirement of extracellular Ca2+ for insulin action has been indicated by past studies. With a view to understand the interaction of insulin with Ca2+ in the vicinity of the cell membrane, we have examined the ability of insulin and its constituent polypeptide chains A and B to translocate Ca2+ and Mg2+ across the lipid bilayer in two sets of synthetic liposomes. The first were unilamellar vesicles made of dimyristoylphosphatidylcholine and contained the Ca2+ sensor dye arsenazo III. Peptide-mediated Ca2+ and Mg2+ transport in these vesicles was monitored at 37 degrees C in a neutral buffer containing CaCl2 or MgCl2 using a difference absorbance method. In the second set, multilamellar vesicles of egg lecithin containing trapped fura-2 were employed and the cation transport was followed at 20 degrees C by fluorescence changes in the dye. Control experiments indicated that the hormonal peptides caused no appreciable perturbation of the vesicles leading to leakage of contents or membrane fusion. In both liposome systems, substantial Ca2+ and Mg2+ transport was observed with insulin and the B chain; the A chain was less effective as an ionophore. Quantitative analysis of the transport kinetic data on the B chain showed a 1:1 peptide-Ca2+ complex formed inside the membrane. In light of the available structural data on Ca2+ binding by insulin and insulin receptor, our results suggest the possibility of the hormone interacting with the receptor with the bound Ca2+.  相似文献   

10.
Using the statistical theory of nonequilibrium thermodynamics we explore the nature of nonequilibrium corrections to chemical potentials in simple enzyme-catalyzed reactions. The statistical definition of the chemical potential, which pertains to systems that are at stable steady states, is applied to the Michaelis-Menten reaction scheme in a cellular-sized compartment that communicates with out-side reservoirs. Calculations based on the kinetic parameters for hexokinase and triose phosphate isomerase show that substantial corrections to the chemical potential of product (the order of 25 mV) are possible if the reaction is sufficiently far from equilibrium. The dependence of the corrections to the chemical potentials on the size of the cellular compartment are explored, and the relevance of the corrections for understanding the thermodynamics of metabolites is discussed.  相似文献   

11.
Bioenergetics is concerned with the energy conservation and conversion processes in a living cell, particularly in the inner membrane of the mitochondrion. This review summarizes the role of thermodynamics in understanding the coupling between the chemical reactions and the transport of substances in bioenergetics. Thermodynamics has the advantages of identifying possible pathways, providing a measure of the efficiency of energy conversion, and of the coupling between various processes without requiring a detailed knowledge of the underlying mechanisms. In the last five decades, various new approaches in thermodynamics, non-equilibrium thermodynamics and network thermodynamics have been developed to understand the transport and rate processes in physical and biological systems. For systems not far from equilibrium the theory of linear non-equilibrium thermodynamics is used, while extended non-equilibrium thermodynamics is used for systems far away from equilibrium. All these approaches are based on the irreversible character of flows and forces of an open system. Here, linear non-equilibrium thermodynamics is mostly discussed as it is the most advanced. We also review attempts to incorporate the mechanisms of a process into some formulations of non-equilibrium thermodynamics. The formulation of linear non-equilibrium thermodynamics for facilitated transport and active transport, which represent the key processes of coupled phenomena of transport and chemical reactions, is also presented. The purpose of this review is to present an overview of the application of non-equilibrium thermodynamics to bioenergetics, and introduce the basic methods and equations that are used. However, the reader will have to consult the literature reference to see the details of the specific applications.  相似文献   

12.
Regulation of Ca(2+) transport determines the duration of a Ca(2+) signal, and hence, the nature of the biological response. Ca(2+)/H+ antiporters such as CAX1 (cation exchanger 1), play a key role in determining cytosolic Ca(2+) levels. Analysis of a full-length CAX1 clone suggested that the CAX1 open reading frame contains an additional 36 amino acids at the N terminus that were not found in the original clone identified by suppression of yeast (Saccharomyces cerevisiae) vacuolar Ca(2+) transport mutants. The long CAX1 (lCAX1) could not suppress the yeast Ca(2+) transport defects despite localization to the yeast vacuole. Calmodulin could not stimulate lCAX1 Ca(2+)/H+ transport in yeast; however, minor alterations in the 36-amino acid region restored Ca(2+)/H+ transport. Sequence analysis suggests that a 36-amino acid N-terminal regulatory domain may be present in all Arabidopsis CAX-like genes. Together, these results suggest a structural feature involved in regulation of Ca(2+)/H+ antiport.  相似文献   

13.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

14.
1. Cytosolic free Ca2+ is an important regulator of ion transport processes in epithelial cells. 2. Free Ca2+ concentration is regulated by a concerted action of Ca2+ transport systems in plasma membranes and intracellular organelles. 3. These transport systems were studied in intestinal and renal cortical cells with emphasis on the transport capacities and Ca2+ affinities. 4. Ca2+ accumulation by permeabilized cells was compared to Ca2+ uptake by isolated organelles and membrane fractions. 5. Effects induced by cell or organelle isolation methods and the influence of temperature and pH on Ca2+ transport capacities were studied.  相似文献   

15.
The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.  相似文献   

16.
This report describes a kinetic analysis of energy-linked Ca2+ transport in rat liver mitochondria, in which a ruthenium red/EGTA [ethanedioxy-bis(ethylamine)-tetraacetic acid] quenching technique has been used to measure rates of 45Ca2+ transport. Accurately known concentrations of free 45Ca2+ were generated with Ca2+/nitrilotriacetic acids buffers for the determination of substrate/velocity relationships. The results show that the initial velocity of transport is a sigmoidal function of Ca2+ concentration (Hill coefficient = 1.7), the Km being 4 muM Ca4 at 0 degrees C and pH 7.4. These values for the Hill coefficient and the Km remain constant in the presence of up to 2 mM phosphate, but with 10 mM acetate both parameters are increased slightly. Both permeant acids increase the maximum velocity to an extent dependent on their concentration. The Ca2+-binding site(s) of the carrier contains a group ionizing at pH approximately 7.5 at 0 degrees C, which is functional in the dissociated state. The stimulatory effect of permeant acids is ascribed to their facilitating the release of Ca2+ from the carrier to the internal phase, an interpretation which is strengthened by the lack of effect of the permeant anion SCN- on Ca2+ transport. Studies on the time-course of Ca2+ uptake and of EFTA-induced Ca2+ efflux from pre-loaded mitochondria demonstrate the reversibility of the carrier in respiring mitochondria and the extent to which this property is influenced by permeant acids. These data are accommodated in a carrier mechanism based on electrophoretic transport of Ca2+ bound to pairs of interacting acidic sites.  相似文献   

17.
Synaptic plasma membranes isolated from rat brain exhibited a Ca2+ transport process that was strictly dependent on the presence of Mg2+ and activated by ATP hydrolysis. The characteristics of this ATP-activated transport process included a high affinity for Ca2+ and ATP with the Kact for these two substrates being 0.7 and 5 microM, respectively, and a lower affinity for Mg2+, Kact = 54 microM. The estimated constants for ATP-activated Ca2+ transport into synaptic membrane vesicles and the dependence of such transport on Mg2+ were indicative that such transport was related to the previously described high affinity (Ca2+ + Mg2+)-ATPase in synaptic membranes. An ATP- and Mg2+-dependent Ca2+ transport process with very similar kinetic characteristics was present also in a general microsomal membrane fraction obtained from brain tissue. The synaptic and microsomal membrane ATP-activated transport processes exhibited differences in their sensitivity to vanadate inhibition. Interaction with vanadate was fairly complex and best analyzed by a two-component model. Thus, the estimated Ki values for vanadate were 0.2 and 6.6 microM for the synaptic membranes and 0.7 and 13.8 microM for the microsomes. Since the microsomal membranes contain a substantial population of intraneuronal endoplasmic reticulum vesicles, the effects of vanadate on Ca2+ transport into intraneuronal membrane organelles, other than mitochondria, was determined in saponin-permeabilized synaptosomes. The estimated Ki values for vanadate inhibition of Ca2+ transport activity were 0.7 and 13 microM. The accumulation of Ca2+ into synaptic plasma membrane vesicles was readily reversed by activation of the Na+-Ca2+ exchange carrier, whereas the Ca2+ associated with intrasynaptosomal organelles was not affected by changes in [Na+]. Thus, there are at least two ATP-dependent Ca2+ transporting processes localized on two distinct neuronal membranes, one on the plasma membrane and the second on intraneuronal membranes.  相似文献   

18.
A simple method is suggested to determine kinetic characteristics of the Ca2+ active transport systems in the smooth muscle. The use of this method has shown that the initial rate of Ca2+ accumulation in the myometrium mitochondria (57.5 nmol per 1 mg of protein/1 min) is 50 times higher than in the sarcolemma vesicles. The calcium capacity of mitochondria (254 nmol per 1 mg of protein) also exceeds essentially (36 times) that of the membrane vesicles. Meanwhile, the Ca2+-transporting systems of these two subcellular structures practically do not differ from each other in the magnitude of the cation semiaccumulation period (4-7 min).  相似文献   

19.
Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating.  相似文献   

20.
L G Mészáros  J Bak 《Biochemistry》1992,31(4):1195-1200
The kinetics of Ca2+ transport mediated by the sarcoplasmic reticulum (SR) Ca-ATPase were investigated by rapid kinetic techniques that either measure the disappearance of Ca2+ from the medium [stopped-flow photometry of Ca2+ indicators or rapid filtration (method 1)] or directly detect the changes in the accessibility of Ca2+ to the exterior of the membrane, i.e., occlusion of Ca2+ within the Ca pump and Ca2+ transport into the lumen of SR vesicles [EGTA quench (method 2)]. SR vesicles were preincubated in micromolar Ca2+ to form the E.2Cacyt intermediate of the Ca-ATPase, and then Ca2+ transport was initiated by addition of ATP. It was found that Ca2+ uptake measured by method 1 began with no lag phase, in spite of the prediction of kinetic models of the Ca-ATPase. Instead, the time course of Ca2+ uptake was found to have two components: a fast and a slow phase, similar to that obtained using method 2, although the rate constant of the fast phase determined by method 1 was considerably lower than that measured by method 2. The fast phase of Ca2+ uptake measured by method 1 was not influenced by either Ca2+ ionophore or detergent treatment, whereas the slow phase was diminished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号