首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
假肥大性肌营养不良(Duchenne/Becker muscular dystrophy, DMD/BMD)是一种由于DMD基因突变导致的X连锁隐性致死性遗传病。目前没有有效的治疗方法。为建立一种既可以对携带者进行检测又可以进行产前基因诊断的方法, 文章联合应用多重连接探针扩增技术(Multiplex ligation-dependent probe amplification, MLPA)和短串联重复序列(Short tandem repeats , STR)为遗传标记连锁分析的方法对26例有高风险再生育患儿的假肥大性肌营养不良家系的孕妇通过羊水穿刺进行产前基因诊断。26例进行产前基因诊断的羊水标本中有7例诊断为男性患儿, 4例诊断为女性携带者。MLPA可以作为筛查DMD基因缺失和重复突变的首选方法。联合应用MLPA和STR连锁分析, 可以提高假肥大性肌营养不良的产前基因诊断率。  相似文献   

2.
The multiplex ligation-dependent probe amplification (MLPA) assay is the most powerful tool in screening for deletions and duplications in the dystrophin gene in patients with Duchenne and Becker muscular dystrophy (DMD/BMD). The efficacy of the assay was validated by testing 20 unrelated male patients with DMD/BMD who had already been screened by multiplex PCR (mPCR). We detected two duplications that had been missed by mPCR. In one DMD patient showing an ambiguous MLPA result, a novel mutation (c.3808_3809insG) was identified. MLPA improved the mutation detection rate of mPCR by 15 %. The results of our study (1) confirmed MLPA to be the method of choice for detecting DMD gene rearrangements in DMD/BMD patients, (2) showed that ambiguous MLPA amplification products should be verified by other methods, and (3) indicated that the MLPA method could be used in screening even for small mutations located in the probe-binding regions.  相似文献   

3.
We have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determine whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)n repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. We present the successful application of this protocol in families who proved refractory to more traditional analyses.  相似文献   

4.

CONTEXT:

Multiplex ligation probe amplification (MLPA) is a new technique to identify deletions and duplications and can evaluate all 79 exons in dystrophin gene in patients with Duchenne muscular dystrophy (DMD). Being semi-quantitative, MLPA is also effective in detecting duplications and carrier testing of females; both of which cannot be done using multiplex PCR. It has found applications in diagnostics of many genetic disorders.

AIM:

To study the utility of MLPA in diagnosis and carrier detection for DMD.

MATERIALS AND METHODS:

Mutation analysis and carrier detection was done by multiplex PCR and MLPA and the results were compared.

RESULTS AND CONCLUSIONS:

We present data showing utility of MLPA in identifying mutations in cases with DMD/BMD. In the present study using MLPA, we identified mutations in additional 5.6% cases of DMD in whom multiplex PCR was not able to detect intragenic deletions. In addition, MLPA also correctly confirmed carrier status of two obligate carriers and revealed carrier status in 6 of 8 mothers of sporadic cases.  相似文献   

5.
Summary A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder that occurs due to inactivating mutations in DMD gene, leading to muscular dystrophy. Prediction of pathological complications of DMD and the identification of female carriers are important research points that aim to reduce disease burden. Herein, we describe a case of a late DMD patient and his immediate female family members, who all carry same DMD mutation and exhibited varied degrees of symptoms. In our study, we sequenced the whole miRNome in leukocytes and plasma of the family members and results were validated using real-time PCR. Our results highlighted the role of miR-409-3p, miR-424-5p, miR-144-3p as microRNAs that show correlation with the extent of severity of muscular weakness and can be used for detection of asymptomatic carriers. Cellular and circulating levels of miR-494-3p had shown significant increase in symptomatic carriers, which may indicate significant roles played by this miRNA in the onset of muscular weakness. Interestingly, circulating levels of miR-206 and miR-410-3p were significantly increased only in the severely symptomatic carrier. In conclusion, our study highlighted several miRNA species, which could be used in predicting the onset of muscle and/or neurological complications in DMD carriers.  相似文献   

7.
Deletions/duplications in the Duchenne muscular dystrophy (DMD) gene account for 60 to 70% of all alterations. A new technique, multiplex ligation-dependent probe amplification (MLPA), has been described that allows the detection of large genetic rearrangements by simultaneous amplification of up to 45 target sequences. The present article is based on the diagnosis of the first Argentine affected families by the application of MLPA. DNA samples from patients with and without a previous diagnosis were included. MLPA assays were performed according to manufacturer recommendations. Polymerase chain reaction and direct sequencing were performed when a single-exon deletion was detected. Results were analyzed using the Gene Marker v1.6 and Sequencing Analysis v5.2 software. In the samples with a previous diagnosis (as identified by short tandem repeat-polymerase chain reaction analysis), MLPA confirmed in some samples the same deletion and detected in others a larger deleted fragment. This enabled the prediction of the expected male phenotype. One deletion and one duplication were detected in patients without previous diagnosis. In this study, we investigated the applicability of MLPA in our country. Our results showed a 100% confirmation of the deleted fragments detected by short tandem repeat segregation analysis. Moreover, in some cases, the MLPA assay was able to refine the breakpoints involved. In addition, MLPA identified deletions/duplications in samples without previous diagnosis. In comparison to the available diagnosis strategies in Argentina, MLPA is less time-consuming, and spans the complete coding region of DMD. The application of MLPA will improve the genetic diagnosis of DMD/Becker muscular dystrophy in our country.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited as an X-linked recessive trait in which males show clinical manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefore, we used a set of seven highly polymorphic dinucleotide (CA)(n) repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is the commonest and best-known of the muscular dystrophies. Being an X-linked disorder, it affects mainly boys. The disease gene was identified in 1987, with the majority of mutations demonstrated to be large-scale deletions. Current best practice molecular diagnosis includes multiplex ligation-dependent probe amplification (MLPA) followed by direct sequencing of all exons at the genomic level, or from cDNA, in order to detect point and other small mutations. The difference between DMD and the allelic Becker muscular dystrophy (BMD) is whether the precise mutation in the gene is a null mutation or results in a modified still partially functional protein. Over the last few years, significant progress has been made in moving experimental therapies into clinical trials, with one of the most promising possible therapies being anti-sense oligonucleotide induced exon-skipping, which converts DMD to BMD. In order to maximise the benefit from future therapies, it will be necessary to start administering the therapies as early as possible in the life of the affected boys, before significant muscle loss occurs. This will require early diagnosis, which evidence suggests is best achieved through population screening. Population screening also allows the avoidance of multiple affected boys in families with no previous family history.  相似文献   

10.
Canine muscular dystrophy: confirmation of X-linked inheritance   总被引:4,自引:0,他引:4  
The genetic basis of muscular dystrophy in golden retriever dogs was investigated by means of experimental matings and cytogenetic studies. An affected male golden retriever was mated to three normal females, producing an F1 generation of six males and 14 females, all of which were clinically normal. Of six F1 females retained for breeding, all were shown to be carriers of muscular dystrophy in outcrosses to unrelated normal male dogs or in backcrosses to the affected male golden retriever. In outcrosses of carrier females, three of seven male and none of nine female offspring were affected, as expected under the X-linked recessive hypothesis. Backcrosses of F1 females to their affected sire also yielded results that are consistent with this hypothesis: 15 of 32 males and 5 of 17 females had muscular dystrophy. Cytogenetic studies of a carrier female, an affected male offspring, and a normal male sibling revealed no detectable abnormalities of the X chromosome.  相似文献   

11.
The accuracy of DNA-based prenatal diagnosis of Duchenne muscular dystrophy (DMD) was determined by study of 174 families. Only 60% of families had a living affected male, and 63% had history of a single affected male. Prenatal diagnosis was declined by 47% of mothers whose DNA studies predicted a carrier risk below 2%, and none have had affected sons. Fetal risk was estimated prospectively by linkage analysis using intragenic and flanking RFLPs and retrospectively using dystrophin cDNA analysis for families whose linkage estimates lacked precision. Diagnostic accuracy was determined by comparing predictions with 40 male pregnancy outcomes. On the basis of linkage analysis, we anticipated 3.2 DMD males and observed 3.0. Retrospective cDNA analysis identified deletions in 2 of these 3 males. The combined use of linkage and cDNA deletion analysis provided a highly accurate method for prenatal diagnosis of DMD.  相似文献   

12.
13.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

14.
15.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder. Here, we report a novel mechanism for the occurrence of DMD in females. In a Vietnamese DMD girl, conventional PCR amplification analysis disclosed a deletion of exons 12–19 of the dystrophin gene on Xp21.2, with a karyotype of 46, XY. Furthermore, a novel mutation in the androgen-receptor gene on Xq11.2-q12 was identified in this girl, which led to male pseudohermaphroditism. Co-occurrence of mutations of these two genes constitutes a novel mechanism underlying female DMD.  相似文献   

16.
Li SY  Sun XF  Li Q  Zhang HM  Wang XM 《遗传》2011,33(3):251-254
假性肥大型进行性肌营养不良症(Duchenne’s muscular dystrophy,DMD)是源于横纹肌的一种X-连锁隐性致死性遗传病,由编码抗肌营养不良蛋白(dystrophin)基因突变所致。为了探讨中国人群中DMD患者的dystrophin基因突变类型和分布特点及其与临床症状的相关性,文章采用Multiplex Ligation-Dependent Probe Amplification(MLPA)方法对720例DMD患者及其母亲和20例正常成年男性进行dystrophin基因分析。结果显示,检出率为64.9%(467/720),54.3%(391/720)的患者为基因缺失;10.6%(76/720)的患者为基因重复。累及Exon45-54缺失突变型占全部缺失型患者的71.9%(281/391);重复突变型累及Exon1-40占全部重复型患者82.9%(63/76);检出的患者中,DMD型和中间型营养不良症(Intermediate muscular dystrophy,IMD)型占90.6%(423/467),Becker型营养不良症(Becker muscular dystrophy,BMD)型占9.4%(44/467)。表明假肥大型肌营养不良症以dystrophin基因缺失突变为主,突变发生在整个基因中非均匀分布,存在突变热区,在缺失和重复的位置和片段长度与肌病的临床症状严重程度之间并不存在简单的相关关系。  相似文献   

17.
Summary We report two male cousins with Duchenne muscular dystrophy (DMD) in whom cytogenetic studies have shown a small interstitial deletion at Xp21. The lesion is readily detectable in patients and carriers by flow cytometry which indicates that approximately 6000 kb of DNA are deleted in each case. The DNA markers OTC, C7, and B24 are present in the deleted X chromosome but 87-8, 87-1, and 754 are absent. Despite apparently identical deletions one affected boy has profound mental handicap while the other is only mildly retarded. The results confirm the assignment of familial DMD to Xp21 and illustrate the value of flow cytometry in improving the precision of chromosome analysis. We have also undertaken flow cytometry in a cell line from a previously reported DMD patient with a de novo Xp21 deletion who had, in addition, chronic granulomatous disease, retinitis pigmentosa, and the McLeod syndrome. The results indicate that the amount of DNA deleted from the X is similar in both families despite the striking differences in phenotype.  相似文献   

18.
Golden retriever muscular dystrophy (GRMD) is a spontaneous, X-linked, progressively fatal disease of dogs and is also a homologue of Duchenne muscular dystrophy (DMD). Two-thirds of DMD patients carry detectable deletions in their dystrophin gene. The defect underlying the remaining one-third of DMD patients is undetermined. Analysis of the canine dystrophin gene in normal and GRMD dogs has failed to demonstrate any detectable loss of exons. Here, we have demonstrated a RNA processing error in GRMD that results from a single base change in the 3' consensus splice site of intron 6. The seventh exon is then skipped, which predicts a termination of the dystrophin reading frame within its N-terminal domain in exon 8. This is the first example of dystrophin deficiency caused by a splice-site mutation.  相似文献   

19.
Summary About one third of Duchenne muscular dystrophy (DMD) patients have no gross DNA rearrangements in the dystrophin gene detectable by Southern blot analysis or multiplex exon amplification. Presumably, in these cases, the deficiency is caused by minor structural lesions of the dystrophin gene. However, to date, only a single human DMD case has been described where a point mutation, producing a stop codon, accounts for the DMD phenotype. To screen for microheterogeneities in the dystrophin gene, we applied analysis by chemical mismatch cleavage to thirteen exons amplified in multiplex sets by the polymerase chain reaction. This analysis covers approximately 20% of the dystrophin-coding sequence. Sixty DMD patients without detectable deletions or duplications were investigated, leading to the identification of two point mutations and four polymorphisms with a frequency higher than 5%. Both point mutations are frameshift mutations in exons 12 and 48, respectively, and are closely followed by stop codons, thus explaining the functional deficiency of the dystrophin gene products in both patients.  相似文献   

20.
E. M. Hutton  M. W. Thompson 《CMAJ》1976,115(8):749-752
Assay of serum creatine kinase activity is useful in the detection of carriers of the X-linked gene for Duchenne muscular dystrophy (DMD). For genetic counselling this assay has been used in conjunction with pedigree analysis to improve estimates of the risk that a female relative of a DMD patient is a carrier. To measure the impact of the program, follow-up information was obtained from women who had received genetic counselling for DMD. Their responses showed that the risk of producing an affected son had been a major factor in their attitude toward family planning, and their reproductive performance correlated inversely with their genetic risk. The decision by the majority of proven carriers to prevent the birth of further male offspring was reflected in a recent decline in the frequency of a known family history of DMD among newly ascertained cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号