首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separate lines of research have noted recruitment of parietal cortex during tasks involving visuo-spatial processes and empathy. To explore the relationship between these two functions, a self-other perspective transformation task and a task of spatial attention (line bisection) were administered to 40 healthy participants (19 women). Performance on these tasks was examined in relation to self-reported empathy. Rightward biases in line bisection correlated positively with trait-level self-reported empathic concern, suggesting a left hemisphere mediation of this prosocial personality trait. Unexpectedly, speed of perspective taking in the self-other transformation task correlated negatively with empathic concern, but only in women, which we interpret in light of gender differences in empathy and strategies for egocentric mental transformations. Together, the findings partially support the commonalities in visuo-spatial attention, perspective-taking and empathy. More broadly, they shed additional light on the relationship between basic cognitive functions and complex social constructs.  相似文献   

2.
《Comptes rendus biologies》2019,342(3-4):97-100
Under visual guidance, healthy subjects usually misbisect radial lines farther than, and vertical lines above the true center. It was suggested that radial and vertical misbisection depended on the presence of an attentional bias toward far/upper space. The aim of the present study was to investigate whether such attentional bias depends on a single mechanism or on separate mechanisms. Ninety participants were asked to bisect lines radially and vertically oriented. The results confirmed the presence of a consistent bisection bias farther than (radial lines), and above (vertical lines) the true center. Furthermore, there was a significant correlation between radial and vertical bisection errors. These findings suggest that a single neural mechanism is involved in producing the attentional bias toward far/upper space.  相似文献   

3.
Molenberghs P  Sale MV 《PloS one》2011,6(7):e23017
Damage to the parietal lobe can induce a condition known as spatial neglect, characterized by a lack of awareness of the personal and/or extrapersonal space opposite the damaged brain region. Spatial neglect is commonly assessed clinically using either the line bisection or the target cancellation task. However, it is unclear whether poor performance on each of these two tasks is associated with the same or different lesion locations. To date, methodological limitations and differences have prevented a definitive link between task performance and lesion location to be made. Here we report findings from a voxel-based lesion symptom mapping (VLSM) analysis of an unbiased selection of 44 patients with a recent unifocal stroke. Patients performed both the line bisection and target cancellation task. For each of the two tasks a continuous score was incorporated into the VLSM analysis. Both tasks correlated highly with each other (r = .76) and VLSM analyses indicated that the angular gyrus was the critical lesion site for both tasks. The results suggest that both tasks probe the same underlying cortical deficits and although the cancellation task was more sensitive than the line bisection task, both can be used in a clinical setting to test for spatial neglect.  相似文献   

4.
The general population shows physiologic biases in the line bisection performance for visuospatial attention, almost to the left known as pseudoneglect. Previous studies have shown that tDCS affects visuospatial attention in line bisection. This research applies tDCS over left posterior parietal cortice (P3) or right posterior parietal cortice (P4) to explore the effect on pseudoneglect. Subjects randomly were divided into five groups by stimulation distribution: (i) P3-anodal (P3A), (ii) P3-cathodal (P3C), (iii) P4-anodal (P4A), (iv) P4-cathodal (P4C), (v) sham. Participants respectively finished the post-tDCS line-bisection assignment (lines on the left/right side of the monitor (LL/LR), and lines in the center of the monitor (LC)) the same as the pre-tDCS task over the session (P3A, P3C, P4A, P4C and sham) tDCS condition. The principal findings were that P3A tDCS reduced the leftward shift in the horizontal line bisection task, as well as P4C tDCS reduced the leftward shift in LL. Sham stimulation as well as P3C and P4A stimulation didn’t have systematic improvements in the line bisection tasks. Therefore, an activation–orientation model of pseudoneglect is corroborated by these findings. Activation of intact structures in the rebalance of left and right parietal cortex might impose modulating effects on tDCS.  相似文献   

5.
Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as ‘pseudoneglect’. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias), but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism.  相似文献   

6.
Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.  相似文献   

7.
Behavioral and physiological characteristics of individuals within the same species have been found to be stable across time and contexts. In this study, we investigated individual differences in learning abilities and object and social manipulation to test for consistency within individuals across different tasks. Individual ravens (Corvus corax) were tested in simple color and position discrimination tasks to establish their learning abilities. We found that males were significantly better in the acquisition of the first discrimination task and the object manipulation task, but not in any of the other tasks. Furthermore, faster learners engaged less often in manipulations of conspecifics and exploration of objects to get access to food. No relationship between object and social manipulation and reversal training were found. Our results suggest that individual differences in regard to the acquisition of new tasks may be related to personalities or at least object manipulation in ravens.  相似文献   

8.
Predatory (towards crickets), intermale, and maternal aggression were examined in four replicate lines of mice that had been selectively bred for high wheel-running (S) and in four random-bred control lines (C). In generation 18, individual differences in both predatory and intermale aggression were significantly consistent across four trial days, but predatory and intermale aggression were uncorrelated both at the individual level and among the eight line means. Latencies to attack crickets were significantly lower in S lines as a group. Intermale aggression, however, did not differ between S and C lines. S lines were significantly smaller in body mass, but did not differ in either testes mass or plasma testosterone. In generations 28 and 30, respectively, S and C lines did not differ in either maternal or intermale aggression. However, significant differences among the individual lines were found for maternal aggression, and one S line exhibited an extremely high mean time of aggression (>120 sec for a 5-min test). Maternal and intermale aggression were not correlated among the eight line means or at the level of individual variation. Overall, our results suggest: (1) predatory aggression and voluntary wheel-running are positively related at the genetic level; (2) predatory and intermale aggression are unrelated at a genetic level; and (3) maternal and intermale aggression are not tightly related at the genetic level. Possible relationships between predatory aggression, dopamine, and wheel-running behavior are discussed.  相似文献   

9.
Impulsivity in delay discounting is associated with maladaptive behaviors such as overeating and drug and alcohol abuse. Researchers have recently noted that delay discounting, even when measured by a brief laboratory task, may be the best predictor of human health related behaviors (e.g., exercise) currently available. Identifying techniques to decrease impulsivity in delay discounting, therefore, could help improve decision-making on a global scale. Visual exposure to natural environments is one recent approach shown to decrease impulsive decision-making in a delay discounting task, although the mechanism driving this result is currently unknown. The present experiment was thus designed to evaluate not only whether visual exposure to natural (mountains, lakes) relative to built (buildings, cities) environments resulted in less impulsivity, but also whether this exposure influenced time perception. Participants were randomly assigned to either a natural environment condition or a built environment condition. Participants viewed photographs of either natural scenes or built scenes before and during a delay discounting task in which they made choices about receiving immediate or delayed hypothetical monetary outcomes. Participants also completed an interval bisection task in which natural or built stimuli were judged as relatively longer or shorter presentation durations. Following the delay discounting and interval bisection tasks, additional measures of time perception were administered, including how many minutes participants thought had passed during the session and a scale measurement of whether time "flew" or "dragged" during the session. Participants exposed to natural as opposed to built scenes were less impulsive and also reported longer subjective session times, although no differences across groups were revealed with the interval bisection task. These results are the first to suggest that decreased impulsivity from exposure to natural as opposed to built environments may be related to lengthened time perception.  相似文献   

10.
In mammals, stress hormones have profound influences on spatial learning and memory. Here, we investigated whether glucocorticoids influence cognitive abilities in birds by testing a line of zebra finches selectively bred to respond to an acute stressor with high plasma corticosterone (CORT) levels. Cognitive performance was assessed by spatial and visual one-trial associative memory tasks. Task performance in the high CORT birds was compared with that of the random-bred birds from a control breeding line. The birds selected for high CORT in response to an acute stressor performed less well than the controls in the spatial task, but there were no significant differences between the lines in performance during the visual task. The birds from the two lines did not differ in their plasma CORT levels immediately after the performance of the memory tasks; nevertheless, there were significant differences in peak plasma CORT between the lines. The high CORT birds also had significantly lower mineralocorticoid receptor mRNA expression in the hippocampus than the control birds. There was no measurable difference between the lines in glucocorticoid receptor mRNA density in either the hippocampus or the paraventricular nucleus. Together, these findings provide evidence to suggest that stress hormones have important regulatory roles in avian spatial cognition.  相似文献   

11.
12.
In lateral interception tasks balls converging onto the same interception location via different trajectories give rise to systematic differences in the kinematics of hand movement. While it is generally accepted that this angle-of-approach effect reflects the prospective (on-line) control of movement, controversy exists with respect to the information used to guide the hand to the future interception location. Based on the pattern of errors observed in a task requiring visual extrapolation of line segments to their intersection with a second line, angle-of-approach effects in lateral interception have been argued to result from perceptual biases in the detection of information about the ball''s future passing distance along the axis of hand movement. Here we demonstrate that this account does not hold under experimental scrutiny: The angle-of-approach effect still emerged when participants intercepted balls moving along trajectories characterized by a zero perceptual bias with respect to the ball''s future arrival position (Experiment 4). Designing and validating such bias-controlled trajectories were done using the line-intersection extrapolation task (Experiments 2 and 3). The experimental set-up used in the present series of experiments was first validated for the lateral interception and the line-intersection extrapolation tasks: In Experiment 1 we used rectilinear ball trajectories to replicate the angle-of-approach effect in lateral interception of virtual balls. Using line segments extracted from these rectilinear ball trajectories, in Experiment 2 we replicated the reported pattern of errors in the estimated locus of intersection with the axis of hand movement. We used these errors to develop a set of bias-free trajectories. Experiment 3 confirmed that the perceptual biases had been corrected for successfully. We discuss the implications on the information-based regulation of hand movement of our finding that the angle-of-approach effect in lateral interception cannot not explained by perceptual biases in information about the ball''s future passing distance.  相似文献   

13.
This study examined emotionality, activity, learning and memory, as well as the influence of emotionality and activity on learning and memory performance in C57BL/6 and DBA/2 mice using a mouse-test battery. DBA/2 mice performed more poorly than C57BL/6 mice in complex learning tasks such as the water maze and object recognition tasks. In contrast, C57BL/6 mice showed attenuated habituation to novelty in the open field apparatus and poorer performance in the step-down passive avoidance task. The C57BL/6 mice were less exploratory and more anxious than the DBA/2 mice. The anxiety score (open arm entries in the elevated plus maze) was significantly correlated with all measures of learning and memory in the object recognition task, and some measures in the passive avoidance and water maze tasks. Analysis of covariance (with open arm entries as a covariate) revealed that some measures on trial 1 of the object recognition task, but not the memory scores on trial 2, were confounded by anxiety. No confounding factors of anxiety were found in the water maze or passive avoidance tasks. Similar results were obtained with the activity scores (line crossing and rearing in the open field). In conclusion, strain differences in activity and anxiety did not account for strain differences in learning and memory performance of C57BL/6 and DBA/2 mice. Nonetheless, the importance of using complete behavioural test batteries should be stressed to ensure that strain differences in learning and memory tasks are not confounded by non-cognitive factors.  相似文献   

14.
Aberg KC  Herzog MH 《PloS one》2010,5(12):e14161
In motor learning, training a task B can disrupt improvements of performance of a previously learned task A, indicating that learning needs consolidation. An influential study suggested that this is the case also for visual perceptual learning. Using the same paradigm, we failed to reproduce these results. Further experiments with bisection stimuli also showed no retrograde disruption from task B on task A. Hence, for the tasks tested here, perceptual learning does not suffer from retrograde interference.  相似文献   

15.
Molecular neurobiological factors determining corpus callosum physiology and anatomy have been suggested to be one of the major factors determining functional hemispheric asymmetries. Recently, it was shown that allelic variations in two myelin-related genes, the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1, are associated with differences in interhemispheric integration. Here, we investigated whether three single nucleotide polymorphisms that were associated with interhemispheric integration via the corpus callosum in a previous study also are relevant for functional hemispheric asymmetries. To this end, we tested more than 900 healthy adults with the forced attention dichotic listening task, a paradigm to assess language lateralization and its modulation by cognitive control processes. Moreover, we used the line bisection task, a paradigm to assess functional hemispheric asymmetries in spatial attention. We found that a polymorphism in PLP1, but not CNTN1, was associated with performance differences in both tasks. Both functional hemispheric asymmetries and their modulation by cognitive control processes were affected. These findings suggest that both left and right hemisphere dominant cognitive functions can be modulated by allelic variation in genes affecting corpus callosum structure. Moreover, higher order cognitive processes may be relevant parameters when investigating the molecular basis of hemispheric asymmetries.  相似文献   

16.
The Stroop and stop-signal tasks are commonly used to index prepotent response inhibition in studies of cognitive development and individual differences. Inhibitory measures from the two tasks have been derived using a variety of methods. Findings of low inter-correlations amongst these measures have been interpreted as evidence for different kinds of inhibitory functions. Our previous study found Stroop and stop-signal accuracy measures to be uncorrelated and they loaded on different inhibitory components in a principal component analysis. The present study examined whether this finding is replicated across different task contexts, derived measures, and methods of derivation. Adolescents (N = 247) were administered a number-quantity Stroop and word and number stop-signal tasks. For each stop-signal task, inhibitory efficiency was estimated using a stop-signal reaction time measure estimated with the central versus the integration methods. For the Stroop interference task, inhibitory efficiency was indexed by reaction time measures (including inverse efficiency scores) generated from difference scores and regression residuals, and delta-plot slopes. The reaction time measures from the two tasks were generally not correlated. The only exception was that Stroop inhibitory ability, indexed by Stroop errors, was related to stop-signal inhibitory efficiency, indexed by stop-signal reaction time. These findings are consistent with previous findings suggesting that measures from the Stroop and stop-signal tasks are influenced by different underlying processes. The impact of variations in dependent measure derivation on the resulting reliabilities of Stroop and stop-signal measures and on observed correlations between them were examined. Variables that may have contributed to the null findings are discussed.  相似文献   

17.
18.
Differences in cognitive skills across taxa, and between monkeys and apes in particular, have been explained by different hypotheses, although these often are not supported by systematic interspecific comparisons. Here, we directly compared the cognitive performance of the four great apes and three monkey species (spider monkeys, capuchin monkeys, and long‐tailed macaques), differing in their phylogenetic‐relatedness and socioecology. We tested subjects on their ability to remember object locations (memory task), track object displacements (transposition task), and obtain out‐of‐reach rewards (support task). Our results showed no support for an overall clear‐cut distinction in cognitive skills between monkeys and apes as species performance varied substantially across tasks. Although we found differences in performance at tracking object displacements between monkeys and apes, interspecific differences in the other two tasks were better explained in terms of differential socioecology, especially differential levels of fission–fusion dynamics. A cluster analysis using mean scores of each condition of the three tasks for each species suggested that the only dichotomy might be between members of the genus Pan and the rest of the tested species. These findings evidence the importance of using multiple tasks across multiple species in a comparative perspective to test different explanations for the enhancement of specific cognitive skills. Am J Phys Anthropol 143:188–197, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Dresp B 《Spatial Vision》2000,13(4):343-357
Thresholds for line contrast detection (experiment 2) were measured with a two-alternative temporal forced-choice procedure as a function of the spatial position of a vertical target line with regard to two co-linear context lines. The different spatial positions of the target line corresponded to values near the position discrimination threshold (experiment 1) reflecting the just detectable lateral offset, or non-co-linearity, between the context lines which were vertically separated by about 100 minutes of visual arc. Target and context lines were vertically separated by about 30 minutes of arc, had equal contrast polarity in one case, and opposite contrast polarity in the other. Strong line contrast detection facilitation is found at perceptually co-linear target locations. This facilitation decreases noticeably at a horizontal target offset that corresponds to the alignment threshold measured with the context lines. The effects are independent of the relative contrast polarity of target and context and, as shown in a third experiment, also independent of both the relative length or number of lines, and the magnitude of their absolute co-axial separation. This independence seems to hold, provided individual line length and co-axial distance between lines are larger than what appears to be the lower limit of the long-range spatial domain for orientation or contour integration (i.e. 20 minutes of arc), as determined by previous studies. The findings reported here suggest that alignment thresholds are likely to define a critical lateral boundary in long-range detection facilitation with co-linear lines. They support models of contour integration based on interactions between neural mechanisms that integrate local signals of contrast, orientation, and relative position or end-to-end alignment. Such mechanisms may help to explain the formation of representations of virtual contours and object contours in human perception.  相似文献   

20.
Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号