首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

2.
J H Bradbury  J A Carver 《Biochemistry》1984,23(21):4905-4913
In paramagnetic metmyoglobin, cyanomyoglobin (CNMb), and deoxymyoglobin, His-36 has a high pK (approximately 8), and the NMR titration behavior of the H-2 resonance is perturbed, due to the presence at low pH of a hydrogen bond with Glu-38, which is broken at high pH. The His-36 H-4 resonance shows no shift with pK approximately 8 because of two opposing chemical shift effects but monitors the titration of nearby Glu-36 (pK = 5.6). In diamagnetic derivatives [(carbon monoxy)myoglobin (COMb) and oxymyoglobin (oxyMb)], the titration behavior of His-36 H-2 and H-4 resonances is normalized (pK approximately 6.8). The very slight alkaline Bohr effect in sperm whale myoglobin (Mb) is interpreted in terms of the pK change of His-36 from deoxyMb to oxyMb and compensating pK changes in the opposite direction of other unspecified groups. In sperm whale COMb at 40 degrees C, the distal histidine (His-64) and His-97 have pK values of 5.0 and 5.9. The meso proton resonances remote from these groups do not show a titration shift, but the nearby gamma-meso proton (pK = 5.3) responds to titration of both histidines, and the upfield Val-68 methyl at -2.3 ppm (pK = 4.7) witnesses the titration of nearby His-64. At 20 degrees C, the latter resonance is reduced in size, and a second resonance occurs at -2.8 ppm, which is insensitive to pH and, hence, more remote from His-64. Both resonances arise from two conformations of Val-68 in slow equilibrium. In oxyMb at 20 degrees C, only the latter resonance is observed, presumably because of the steric restrictions imposed by the hydrogen bond between ligand and His-64 in oxyMb, which is not present in COMb. In oxyMb the pK of His-97 (5.6) is similar to that of the meso proton resonances (5.5) and to the pK of other pH-dependent processes, including the very small acid Bohr effect. It is likely that these processes are controlled by the titration of His-97.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
S J Shire  G I Hanania  F R Gurd 《Biochemistry》1975,14(7):1352-1358
The modified Tanford-Kirkwood electrostatic theory (Shire et al., 1974a) was applied to ferrimyoglobins from the following animal species: sperm whale (Physeter catodon), horse, California grey whale (Eschrichtius gibbosus), harbor seal (Phoca vitulina), and California sea lion (Zalophus californianus). Computations were made of the overall hydrogen ion titration curves of the proteins, and of pH and ionic strength variations of ionization equilibria for individual groups in the protein, with particular reference to the hemic acid ionization of the iron bound water molecule. Coordinates and static solvent accessibility were estimated in terms of the sperm whale myoglobin structure. Where possible, theoretical results and experimental data are compared. Some comparative features of charge and ionization properties among the various myoglobins are presented.  相似文献   

4.
The central question to be discussed in this paper is whether the structure established for sperm whale myoglobin in the crystalline state is the same as that of the protein in solution. As judged by its ultraviolet optical rotatory dispersion, the helical content of metmyoglobin in solution does not differ from that in the crystal, 77 per cent. Although an uncertainty of about ±5 per cent must attach to this result, it excludes many alternative arrangements of the polypeptide chain. The folding of the chain may be further restricted to the basic form seen in the crystal if the dimensions of the molecule in solution and the interactions of specific chemical groups are taken into account. Since the rotatory dispersion of metmyoglobin is constant with respect to ionic strength, and since the dispersions of reduced and oxymyoglobin reveal no change in helical content upon their formation from metmyoglobin, one may infer that the structure of the protein is largely maintained both as it dissolves and during its reversible combination with oxygen. The crystallographic model of myoglobin thus offers a structural basis for attempting to explain its physiological function in solution. The relevance of this conclusion to the crystal-solution problems presented by other species of protein is then best seen in the light of common factors that govern the equilibrium of all proteins between crystal and solution.  相似文献   

5.
Sperm whale apomyoglobin structure has been studied thermodynamically at different temperatures and pH of solution by scanning microcalorimetry, viscosimetry, NMR and CD spectrometry techniques. It has been shown that at pH close to neutral, apomyoglobin has a compact highly cooperative structure with a well defined hydrophobic core. The stability of this structure is maximal at 30 degrees C and decreases both with an increase and decrease of temperature. Correspondingly, the compact three-dimensional structure of apomyoglobin is disrupted both upon heating and cooling of the solution. In acidic solutions this process is reversible and represents a cooperative transition between two macroscopic states--the ordered and disordered ones which can be regarded as the native and denatured states of molecule. The compactness and ellipticity of the denatured state depend significantly on pH: upon a decrease of pH in the region of ionization of carboxylic groups these parameters approach the values characteristic of a random coil. A comparison of the maximal stability of the cooperative structure of apomyoglobin which is 12 kJ.mol-1 at 30 degrees C and pH close to neutral ones with the maximal stability of metmyoglobin which is 49 kJ.mol-1 shows that the contribution of heme in the stabilization of the native myoglobin structure reaches 37 kJ.mol-1.  相似文献   

6.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

7.
The titration behavior of individual tyrosine residues of myoglobins has been studied by observing the pH dependence of the chemical shifts of Czeta and Cgamma of these residues in natural abundance of 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes, at 37 degrees) of cyanoferrimyoglobins from sperm whale, horse, and red kangaroo. A comparison of the pH dependence of the spectra of the three proteins yielded specific assignments for the resonance of Tyr-151 (sperm whale) and Tyr-103 (sperm whale and horse). Selective proton decoupling yielded specific assignments for Czeta of Tyr-146 of the cyanoferrimyoglobins from horse and kangaroo, but not the corresponding assignment for sperm whale. The pH dependence of the chemical shifts indicated that only Tyr-151 and Tyr-103 are titratable tyrosine residues. Even at pH 12, Tyr-146 did not begin to titrate. The titration behavior of C zeta and Cgamma of Tyr-151 of sperm whale cyanoferrimyoglobin yielded a single pK value of 10.6. The pH dependence of the chemical shift of each of the resonances of Tyr-103 of the cyanoferrimyoglobins from horse and sperm whale could not be fitted with the use of a single pK value, but was consistent with two pK values (about 9.8 and 11.6). Furthermore, the resonances of Czeta and Cgamma of Tyr-103 broadened at high pH. The titration behavior of the tyrosines of sperm whale carbon monoxide myoglobin and horse ferrimyoglobin was also examined. A comparison of all the experimental results indicated that Tyr-151 is exposed to solvent, Tyr-146 is not exposed, and Tyr-103 exhibits intermediate behavior. These results for myoglobins in solution are consistent with expectations based on the crystal structure.  相似文献   

8.
The solution behavior of sperm whale metmyoglobin in 0.15 I phosphate-chloride buffer, pH 7.2, has been examined by sedimentation equilibrium, frontal gel chromatography, and sedimentation velocity. Results obtained from all three studies are shown to be consistent with a self-association model in which dimerization of the myoglobin is governed by an association equilibrium constant of 0.068 liter/g (580 M-1) at 20 degrees C.  相似文献   

9.
The unfolding at pH 8 of chicken cardiac aquometmyoglobin was examined as a function of temperature and concentration of guanidinium chloride using the two-state model. The isothermal unfolding data at 25°C were fitted to Tanford's transfer model and the binding model of Aune and Tanford. The estimates obtained for ΔGD) were virtually identical, viz., 8.3 ±0.3 kcal mol?1. The chicken metmyoglobin is thus some 5.3 kcal mol?1 less stable than that of sperm whale metmyoglobin. The unfolding parameters α and Δn were decreased 20% from those of mammalian myoglobins thus far examined, suggesting nonidentity of native conformations. The apparent enthalpy change on unfolding was dependent on both temperature and denaturant concentration. The decreases in the isothermal unfolding parameters from those of sperm whale are principally assigned to three of the 46 sequence changes.  相似文献   

10.
Sperm whale metmyoglobin, which has tyrosine residues at positions 103, 146, and 151, dimerizes in the presence of H2O2. Equine metmyoglobin, which lacks Tyr-151, and red kangaroo metmyoglobin, which lacks Tyr-103 and Tyr-151, do not dimerize in the presence of H2O2. The dityrosine content of the sperm whale myoglobin dimer shows that it is primarily held together by dityrosine cross-links, although more tyrosine residues are lost than are accounted for by dityrosine formation. Digestion of the myoglobin dimer with chymotrypsin yields a peptide with the fluorescence spectrum of dityrosine. The amino acid composition, amino acid sequence, and mass spectrum of the peptide show that cross-linking involves covalent bond formation between Tyr-103 of one myoglobin chain and Tyr-151 of the other. Replacement of the prosthetic group of sperm whale myoglobin with zinc protoporphyrin IX prevents H2O2-induced dimerization even when intact horse metmyoglobin is present in the incubation. This suggests that the tyrosine radicals required for the dimerization reaction are generated by intra- rather than intermolecular electron transfer to the ferryl heme. Rapid electron transfer from Tyr-103 to the ferryl heme followed by slower electron transfer from Tyr-151 to Tyr-103 is most consistent with the present results.  相似文献   

11.
The three-dimensional structure of horse heart metmyoglobin has been refined to a final R-factor of 15.5% for all observed data in the 6.0 to 1.9 A resolution range. The final model consists of 1242 non-hydrogen protein atoms, 154 water molecules and one sulfate ion. This structure has nearly ideal bonding and bond angle geometry. A Luzzati plot of the variation in R-factor with resolution yields an estimated mean co-ordinate error of 0.18 A. An extensive analysis of the pattern of hydrogen bonds formed in horse heart metmyoglobin has been completed. Over 80% of the polypeptide chain is involved in eight helical segments, of which seven are composed mainly of alpha-helical (3.6(13))-type hydrogen bonds; the remaining helix is composed entirely of 3(10) hydrogen bonds. Altogether, of 102 hydrogen bonds between main-chain atoms only six are not involved in helical structures, and four of these six occur within beta-turns. The majority of water molecules in horse heart metmyoglobin are found in solvent networks that range in size from two to 35 members. The size of water molecule networks can be rationalized on the basis of three factors: the number of hydrogen bonds to the protein surface, the presence of charged side-chain atoms, and the ability to bridge to neighboring molecules in the crystal lattice. Bridging water networks form the dominant intermolecular interactions. The backbone conformation of horse heart metmyoglobin is very similar to sperm whale metmyoglobin, with significant differences in secondary structure occurring only near residues 119 and 120, where residues 120 to 123 in sperm whale form a distorted type I reverse turn and the horse heart protein has a type II turn at residues 119 to 122. Nearly all of the hydrogen bonds between main-chain atoms (occurring mainly in helical regions) are common to both proteins, and more than half of the hydrogen bonds involving side-chain atoms observed in horse heart are also found in sperm whale metmyoglobin. Unlike sperm whale metmyoglobin, the heme iron atom in horse heart metmyoglobin is not significantly displaced from the plane of the heme group.  相似文献   

12.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

13.
The ionization of 4-nitroimidazole to 4-nitroimidazolate was investigated as a function of ionic strength. The apparent pKa varies from 8.99 to 9.50 between 0.001 and 1.0 M ionic strength, respectively, at 25 degrees C. The ionic strength dependence of this ionization is anomalous. The binding of 4-nitroimidazole by horse metmyoglobin was studied between pH 5.0 and 11.5 and as a function of ionic strength between 0.01 and 1.0 M. The association rate constant is pH-dependent, varying from 24 M(-1)s(-1) at pH 5 to a maximum value of 280 M(-1)s(-1) at pH 9.5 and then decreasing to 10 M(-1)s(-1) at pH 11.5 in 0.1 M ionic strength buffers. The dissociation rate constant has a much smaller pH dependence, varying from 0.082 s(-1) at low pH to 0.035 s(-1) at high pH, with an apparent pKa of 6.5. The binding affinity of 4-nitroimidazole to horse metmyoglobin is about 2.5 orders of magnitude stronger than that for imidazole and this increased affinity is attributed to the much slower dissociation rate for 4-nitroimidazole compared to that of imidazole. Although the ionic strength dependence of the binding rate is small and secondary kinetic salt effects can account for the ionic strength dependence of the association rate constant, the pH dependence of the rate constants and microscopic reversibility arguments indicate that the anionic form of the ligand binds more rapidly to all forms of metmyoglobin than does the neutral form of the ligand. However, the spectrum of the complex is similar to model complexes involving neutral imidazole and not imidazolate. The latter observation suggests that the initial metmyoglobin/4-nitroimidazolate complex rapidly binds a proton and the neutral form of the bound ligand is stabilized, probably through hydrogen binding with the distal histidine.  相似文献   

14.
The reactivity of the endogenous antioxidants ascorbate, ergothioneine, and urate toward the high oxidation state of sperm whale myoglobin, ferrylmyoglobin-formed upon oxidation of metmyoglobin by H2O2--was evaluated by optical spectroscopy and SDS-PAGE analysis. Depending on whether these antioxidants were present in the reaction mixture before or after the addition of H2O2 to a metmyoglobin suspension, two different effects were observed: (a) In the former instances, ascorbate, ergothioneine, and urate reduced efficiently the oxoferryl moiety in ferrylmyoglobin to metmyoglobin and prevented dimer formation, a process which requires intermolecular cross-link involving specific tyrosyl residues. In addition, all the reducing compounds inhibited--albeit with different efficiencies--dityorosine-dependent fluorescence build up produced via dimerization of photogenerated tyrosyl radicals. (b) In the latter instances, the antioxidants reduced the preformed sperm whale ferrylmyoglobin to a modified metmyoglobin, the spectral profile of which was characterized by a blue shift of the typical 633 nm absorbance of native metmyoglobin. In addition, under these experimental conditions, the antioxidants did not affect dimer formation, thus indicating the irreversible character of the process. The dimeric form of sperm whale myoglobin--separated from the monomeric form by gel electrophoresis of a solution in which ergothioneine was added to preformed ferrylmyoglobin--revealed optical spectral properties in the visible region identical to that of the modified myoglobin. This suggests that the dimeric form of the hemoprotein is redox active, inasmuch as the oxoferryl complex can be reduced to its ferric form. These results are discussed in terms of the potential reactivity of these endogenous antioxidants toward the reducible loci of ferrylmyoglobin, the oxoferryl moiety, and the apoprotein radical.  相似文献   

15.
The structure of horse heart metmyoglobin has been determined with a molecular replacement approach and subsequently refined using rigid body and restrained-parameter least squares methods to a conventional crystallographic R-factor of 0.16 for all observed reflections in the 6.0-2.8-A resolution range. The polypeptide chain of this protein is found to be organized into eight helical regions (labeled A-H) which collectively form a hydrophobic pocket in which the heme prosthetic group is bound. Our results show that the overall thermal motions of individual residues of horse heart metmyoglobin are correlated with their mean distances from the heme group. In comparisons with the structure of sperm whale metmyoglobin it has been found that horse heart metmyoglobin has unique polypeptide chain conformations in four regions. These include residues in the immediate vicinity of the amino and carboxyl termini, residues about Lys-16, and residues 117-124 which are in the interhelical region between helices G and H. Many of these conformational changes appear to occur as a consequence of a different pattern of salt-bridging interactions between charged residues on the surface of horse heart metmyoglobin. The overall average positional deviation observed between corresponding alpha-carbons in the polypeptide chains of horse heart and sperm whale metmyoglobin is 0.50 A. This value for atoms of the porphyrin core of the central heme group is 0.39 A. A total of 12 well defined water molecules and 1 sulfate ion are included in the current structural model of horse heart metmyoglobin. One of these water molecules is found to be coordinated to the heme iron atom and hydrogen bonded to the side chain of His-64. The sulfate ion is hydrogen bonded to amide groups at the amino-terminal end of the E-helix and, as well, forms similar interactions with the amino-terminal end of the D-helix of an adjacent protein molecule in the crystalline lattice.  相似文献   

16.
The conformational free energy of armadillo metmyoglobin was examined over a pH range of 4.4-8.0 and a guanidinium chloride concentration of 0-2.3 M. For isothermal unfolding at 25 degrees essentially the same value was obtained for the conformational free energy from all the data: 27 +/- 2 kJ/mol. These data suggest that the armadillo has the least stable metmyoglobin of any mammal thus far examined. The cooperativity of the unfolding with respect to denaturant is considerably less than for other mammalian myoglobins. On unfolding only three to four side chains with a pKA of 6 in the unfolded protein are protonated instead of the six found for horse and sperm whale myoglobins.  相似文献   

17.
Genetically engineered cytochrome b5 has been used to quantitative binding interactions of this protein with cytochrome P-450cam and sperm whale metmyoglobin by static fluorescence titration. Two cytochrome b5 mutants were constructed by cassette mutagenesis to replace a surface threonine residue with cysteine at two crystallographically defined positions, 65 and 8, located 11 and 21 A, respectively, from the nearest heme edge. The T65C and T8C mutant proteins were labeled with the sulfhydryl selective fluorescent reagent, acrylodan, which provided a spectral probe for monitoring protein-protein association. The fluorescence emission spectra of the acrylodan-labeled T65C mutant exhibited an ionic strength-dependent, blue-shifted fluorescence enhancement upon binding met-myoglobin, cytochrome c, and cytochrome P-450cam, whereas the acrylodan-labeled T8C mutant fluorescence emission remained unchanged during all titrations. Dissociation constants of 1.3, 0.6, and 0.5 microM, pH 7.15, were measured for metmyoglobin, cytochrome P-450cam, and cytochrome c, respectively. A similar averaged binding surface for cytochrome P-450cam and cytochrome c is suggested by their closely related degree of fluorescence enhancement, degree of emission blue shift, and binding free energies. Myoglobin binds less tightly, enhances fluorescence to a greater extent, and exhibits a larger blue shift in acrylodan emission spectra suggesting a different averaged binding orientation relative to the acrylodan probe.  相似文献   

18.
The effects of pH, acetimidate concentration, temperature, and reaction time of methyl acetimidate with sperm whale myoglobulin have been assessed. Reaction at pH 9.8 and 15 degrees C for 30 min with a sixfold excess of methyl acetimidate relative to each amino group yielded six acetimidomyoglobin derivatives which were separated and purified. Reaction with tetrahydrophthalic anhydride revealed the number of amino groups that remained unreacted in each separated component and made possible further subractionation. Modification at the NH2 terminus was quantitated by automated stepwise Edman degradation. The acetimidyl and tetrahydrophthalyl groups, were readily removable. The potentiometric titration of three of the completely deprotected components showed identity with the parent untreated sperm whale myoglobin. The first of two major products was acetimidated at all 19 epsilon-amino groups but not at the NH2 terminus. The second major product bore a blocked NH2 terminus but retained one unmodified epsilon-amino group, identified after modification by trinitrobenzenesulfonate as lysine residue 77. Of the minor components, one was identified as completely acetimidated at all 20 amino groups. The other three minor components appeared to contain irreversible by-products.  相似文献   

19.
The reactions of hydrogen peroxide with human methemoglobin, sperm whale metmyoglobin, and horse heart metmyoglobin were studied by electron paramagnetic resonance (EPR) spectroscopy at 10 K and room temperature. The singlet EPR signal, one of the three signals seen in these systems at 10 K, is characterized by a poorly resolved, but still detectable, hyperfine structure that can be used to assign it to a tyrosyl radical. The singlet is detectable as a quintet at room temperature in methemoglobin with identical spectral features to those of the well characterized tyrosyl radical in photosystem II. Hyperfine splitting constants found for Tyr radicals were used to find the rotation angle of the phenoxyl group. Analysis of these angles in the crystal structures suggests that the radical resides on Tyr151 in sperm whale myoglobin, Tyr133 in soybean leghemoglobin, and either alphaTyr42, betaTyr35, or betaTyr130 in hemoglobin. In the sperm whale metmyoglobin Tyr103Phe mutant, there is no detectable tyrosyl radical present. Yet the rotation angle of Tyr103 (134 degrees) is too large to account for the observed EPR spectrum in the wild type. Tyr103 is the closest to the heme. We suggest that Tyr103 is the initial site of the radical, which then rapidly migrates to Tyr151.  相似文献   

20.
Structural transitions occurring during the alkalin titration of human somatotropin, human choriomammotropin, and ovine prolactin have been investigated by means of circular dichroism and fluorescence emission spectra. Human somatotropin exhibited an isodichroic point at 287 nm, with all spectral changes being reversed upon back titration from pH 12.50 to pH 8.0. Fluorescence quenching as a function of pH produced a simple sigmoidal curve. Human choriomammotropin exhibited an isodichroic point at 288 nm. The fluorescence and circular dichroism spectra of this protein were found to be reversible between pH 8.0 and 11.0. However, on titration above pH 11, the isodichroic point and the reversibility of the circular dichroism spectra were lost. This conformational transition was accompanied by a sharp increase in fluorescence quantum yield. The circular dichroism spectra of ovine prolactin showed essentially no change on titration to pH 11.0. However, between pH 11.0 and 12.0, a sharp conformational transition was observed similar to that seen in human choriomammotropin, but not exhibiting the same increase in fluorescence quantum yield. The fluorescence titration of prolactin was found to be essentially reversible upon back titration from pH 12.5, although the circular dichroism spectra were not reversible from this pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号