首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.  相似文献   

2.
The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.  相似文献   

3.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

4.
Desulfobulbus propionicus was able to grow with Fe(III), the humic acids analog anthraquinone-2,6-disulfonate (AQDS), or a graphite electrode as an electron acceptor. These results provide an explanation for the enrichment of Desulfobulbaceae species on the surface of electrodes harvesting electricity from anaerobic marine sediments and further expand the diversity of microorganisms known to have the ability to use both sulfate and Fe(III) as an electron acceptor.  相似文献   

5.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

6.
Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml−1 for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment cultures from contaminated sites were also shown to rapidly reduce millimolar amounts of U(VI) in comparison to killed controls. With DNA extracted directly from subsurface sediments, quantitative analysis of 16S rRNA gene sequences with MPN-PCR indicated that Geobacteraceae sequences were more abundant in pristine compared to contaminated environments,whereas Anaeromyxobacter sequences were more abundant in contaminated sediments. Thus, results from a combination of cultivation-based and cultivation-independent approaches indicate that the abundance/community composition of Fe(III)-reducing consortia in subsurface sediments is dependent upon geochemical parameters (pH, nitrate concentration) and that microorganisms capable of producing spores (gram positive) or spore-like bodies (Anaeromyxobacter) were representative of acidic subsurface environments.  相似文献   

7.
Previous studies have shown that members of the family Geobacteraceae that attach to the anodes of sediment fuel cells are directly involved in harvesting electricity by oxidizing organic compounds to carbon dioxide and transferring the electrons to the anode. In order to learn more about this process, microorganisms from the anode surface of a marine sediment fuel cell were enriched and isolated with Fe(III) oxide. Two unique marine isolates were recovered, strains A1T and A2. They are gram-negative, nonmotile rods, with abundant c-type cytochromes. Phylogenetic analysis of the 16S rRNA, recA, gyrB, fusA, rpoB, and nifD genes indicated that strains A1T and A2 represent a unique phylogenetic cluster within the Geobacteraceae. Both strains were able to grow with an electrode serving as the sole electron acceptor and transferred ca. 90% of the electrons available in their organic electron donors to the electrodes. These organisms are the first psychrotolerant members of the Geobacteraceae reported thus far and can grow at temperatures between 4 and 30°C, with an optimum temperature of 22°C. Strains A1T and A2 can utilize a wide range of traditional electron acceptors, including all forms of soluble and insoluble Fe(III) tested, anthraquinone 2,6-disulfonate, and S0. In addition to acetate, both strains can utilize a number of other organic acids, amino acids, long-chain fatty acids, and aromatic compounds to support growth with Fe(III) nitrilotriacetic acid as an electron acceptor. The metabolism of these organisms differs in that only strain A1T can use acetoin, ethanol, and hydrogen as electron donors, whereas only strain A2 can use lactate, propionate, and butyrate. The name Geopsychrobacter electrodiphilus gen. nov., sp. nov., is proposed for strains A1T and A2, with strain A1T (ATCC BAA-880T; DSM 16401T; JCM 12469) as the type strain. Strains A1T and A2 (ATCC BAA-770; JCM 12470) represent the first organisms recovered from anodes that can effectively couple the oxidation of organic compounds to an electrode. Thus, they may serve as important model organisms for further elucidation of the mechanisms of microbe-electrode electron transfer in sediment fuel cells.  相似文献   

8.
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.  相似文献   

9.
Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments.  相似文献   

10.
The capacity of two anaerobic consortia to oxidize different organic compounds, including acetate, propionate, lactate, phenol and p-cresol, in the presence of nitrate, sulfate and the humic model compound, anthraquinone-2,6-disulfonate (AQDS) as terminal electron acceptors, was evaluated. Denitrification showed the highest respiratory rates in both consortia studied and occurred exclusively during the first hours of incubation for most organic substrates degraded. Reduction of AQDS and sulfate generally started after complete denitrification, or even occurred at the same time during the biodegradation of p-cresol, in anaerobic sludge incubations; whereas methanogenesis did not significantly occur during the reduction of nitrate, sulfate, and AQDS. AQDS reduction was the preferred respiratory pathway over sulfate reduction and methanogenesis during the anaerobic oxidation of most organic substrates by the anaerobic sludge studied. In contrast, sulfate reduction out-competed AQDS reduction during incubations performed with anaerobic wetland sediment, which did not achieve any methanogenic activity. Propionate was a poor electron donor to achieve AQDS reduction; however, denitrifying and sulfate-reducing activities carried out by both consortia promoted the reduction of AQDS via acetate accumulated from propionate oxidation. Our results suggest that microbial reduction of humic substances (HS) may play an important role during the anaerobic oxidation of organic pollutants in anaerobic environments despite the presence of alternative electron acceptors, such as sulfate and nitrate. Methane inhibition, imposed by the inclusion of AQDS as terminal electron acceptor, suggests that microbial reduction of HS may also have important implications on the global climate preservation, considering the green-house effects of methane.  相似文献   

11.
Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H2 to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction.  相似文献   

12.
Anaeromyxobacter dehalogenans strain 2CP-C has been shown to grow by coupling the oxidation of acetate to the reduction of ortho-substituted halophenols, oxygen, nitrate, nitrite, or fumarate. In this study, strain 2CP-C was also found to grow by coupling Fe(III) reduction to the oxidation of acetate, making it one of the few isolates capable of growth by both metal reduction and chlororespiration. Doubling times for growth of 9.2 and 10.2 h were determined for Fe(III) and 2-chlorophenol reduction, respectively. These were determined by using the rate of [14C]acetate uptake into biomass. Fe(III) compounds used by strain 2CP-C include ferric citrate, ferric pyrophosphate, and amorphous ferric oxyhydroxide. The addition of the humic acid analog anthraquinone 2,6-disulfonate (AQDS) increased the reduction rate of amorphous ferric iron oxide, suggesting AQDS was used as an electron shuttle by strain 2CP-C. The addition of chloramphenicol to fumarate-grown cells did not inhibit Fe(III) reduction, indicating that the latter activity is constitutive. In contrast, the addition of chloramphenicol inhibited dechlorination activity, indicating that chlororespiration is inducible. The presence of insoluble Fe(III) oxyhydroxide did not significantly affect dechlorination, whereas the presence of soluble ferric pyrophosphate inhibited dechlorination. With its ability to respire chlorinated organic compounds and metals such as Fe(III), strain 2CP-C is a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.  相似文献   

13.
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.  相似文献   

14.
Desulfobulbus propionicus was able to grow with Fe(III), the humic acids analog anthraquinone-2,6-disulfonate (AQDS), or a graphite electrode as an electron acceptor. These results provide an explanation for the enrichment of Desulfobulbaceae species on the surface of electrodes harvesting electricity from anaerobic marine sediments and further expand the diversity of microorganisms known to have the ability to use both sulfate and Fe(III) as an electron acceptor.  相似文献   

15.
The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [13C]toluene were recovered as 13CO2 in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [13C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors.  相似文献   

16.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

17.
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.  相似文献   

18.
The anaerobic microbial oxidation of toluene to CO(2) coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [(13)C]toluene were recovered as (13)CO(2) in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [(13)C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors.  相似文献   

19.
Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H(2) to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction.  相似文献   

20.
Microbial community composition associated with benzene oxidation under in situ Fe(III)-reducing conditions in a petroleum-contaminated aquifer located in Bemidji, Minn., was investigated. Community structure associated with benzene degradation was compared to sediment communities that did not anaerobically oxidize benzene which were obtained from two adjacent Fe(III)-reducing sites and from methanogenic and uncontaminated zones. Denaturing gradient gel electrophoresis of 16S rDNA sequences amplified with bacterial or Geobacteraceae-specific primers indicated significant differences in the composition of the microbial communities at the different sites. Most notable was a selective enrichment of microorganisms in the Geobacter cluster seen in the benzene-degrading sediments. This finding was in accordance with phospholipid fatty acid analysis and most-probable-number–PCR enumeration, which indicated that members of the family Geobacteraceae were more numerous in these sediments. A benzene-oxidizing Fe(III)-reducing enrichment culture was established from benzene-degrading sediments and contained an organism closely related to the uncultivated Geobacter spp. This genus contains the only known organisms that can oxidize aromatic compounds with the reduction of Fe(III). Sequences closely related to the Fe(III) reducer Geothrix fermentans and the aerobe Variovorax paradoxus were also amplified from the benzene-degrading enrichment and were present in the benzene-degrading sediments. However, neither G. fermentans nor V. paradoxus is known to oxidize aromatic compounds with the reduction of Fe(III), and there was no apparent enrichment of these organisms in the benzene-degrading sediments. These results suggest that Geobacter spp. play an important role in the anaerobic oxidation of benzene in the Bemidji aquifer and that molecular community analysis may be a powerful tool for predicting a site’s capacity for anaerobic benzene degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号