首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 344 毫秒
1.
水稻光温敏核不育系的育性遗传分析   总被引:1,自引:0,他引:1  
运用混合遗传模型对水稻光温敏核不育系1290S与1990杂交的F_1、F_2、B_1、B_2和P_1、P_2多世代群体进行联合分析,结果表明:光温敏核不育性遗传符合E-1模型,为两对加性-显性-上位性主基因 加性-显性多基因遗传模型.两对主基因的加性效应均为-0.059,而两对主基因的显性效应分别为0.153和-0.263,多基因的显性效应更大,为-0.404.其中上位性效应比较明显,以显性.显性互作最大,达0.435.B_1、B_2和F_2群体中主基因遗传率分别为56.03%,44.44%,83.0 7%,多基因遗传率分别为42.24%,33.33%,15.23%,表明1290S的不育性主要由两对主基因 多基因相互配合控制遗传的,环境虽有一定影响,但影响较小.  相似文献   

2.
本试验选择2个番茄果实乙烯释放量显著不同的番茄品系,通过P_1、P_2、F_1、F_2、B_1和B_2六世代的分析方法,研究了番茄果实乙烯释放量的遗传规律.结果表明:番茄果实乙烯释放量遗传符合1对负向完全显性主基因+加性-显性多基因模型(D-4),主基因效应在B_1、B_2和F_(23)个世代的遗传率分别为36.33%、44.09%和35.14%,多基因效应在B_1、B_2和F_(23)个世代的遗传率分别为54.73%、40.50%和54.88%.  相似文献   

3.
水稻单株有效穗数主基因+多基因混合遗传分析   总被引:1,自引:0,他引:1  
选择单株有效穗数差异大的3个亲本CB1(15.3)、CB4(6.4)和CB7(11.8),配制CB1×CB4和CB7×CB4组合,建立了相应的P_1、F_1、P_2、B_1、B_2、F_2群体,将其分为中、晚两个生产季节种植,考察了有效穗数性状.利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B_1、B_2、F_2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量.结果表明该性状在所有B_1、B_2、F_2中均符合2对加性-显性-上位性主基因+加性-显性-上位性多基因的遗传模式,主基因遗传率为30.64%-72.26%,多基因遗传率为3.41%-28.20%,总基因遗传率为45.96%-87.29%;相同组合种植季别主基因遗传率及一阶参数对比表明,杂交亲本的选择及种植季别对该性状遗传率影响较小,h_a、h_b、j_(ab)、j_(ba)值均为负值表明显性效应和加性显性互作对该性状表达具有抑制作用.  相似文献   

4.
不同抗病基因的挖掘是作物持久抗性遗传改良的基础。本研究利用2份抗黑腐病(Xanthamonas campestris pv.campestris)萝卜(Raphanus sativus L.)材料(KB10Q-22、KB10Q-24)和1份感病材料(KB10Q-33)构建了2个F2群体,采用苗期剪叶+喷雾法接种黑腐病菌Xcc8004进行抗病性鉴定。应用P1、P2、F1、F24个世代的数量性状主基因+多基因混合遗传分析方法,研究了萝卜2个不同抗源抗黑腐病的遗传规律,结果表明2份材料的遗传规律不同。以KB10Q-22为母本的F1植株表现为抗病,其遗传模型为E_0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因模型;而以KB10Q-24为母本的F1植株表现为感病,其遗传模型为D_0模型,即1对加性-显性主基因+加性-显性-上位性多基因模型。两群体主基因遗传率分别为87.73%和55.64%,抗性遗传以主基因为主。  相似文献   

5.
大白菜抽薹性状的主基因+多基因遗传分析   总被引:5,自引:3,他引:5  
以大白菜易抽薹自交系06S1703和耐抽薹自交系06J32形成的P1、P2、F1、F2、B1和B2等6个世代为材料,应用主基因+多基因多世代联合分析方法,对大白菜抽薹性状进行了研究.结果表明,大白菜的抽薹性受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,其中2对主基因的加性效应值分别为-3.575 8和-13.619,显性效应值分别为-3.755 2和-2.257 7.B1、B2和F2世代的主基因遗传率分别为87.95%、95.13%和96.25%,只在B1群体中检测到多基因效应,遗传率仅为1.39%,说明大白菜的抽薹性是以主基因遗传为主,可以进行早期选择.  相似文献   

6.
雌雄同株黄瓜单性结实性主基因+多基因混合遗传分析   总被引:6,自引:2,他引:6  
以雌雄同株黄瓜强单性结实自交系'6457'和非单性结实自交系'6426'为亲本,建立了5世代联合群体(P1、P2、F1、F2、F2∶3),采用植物数量性状主基因+多基因混合遗传模型对群体的单性结实性进行多世代联合分析.结果表明:雌雄同株黄瓜单性结实性表现为不完全显性遗传,符合D-2遗传模型,受1对加性主基因+加性-显性多基因控制.主基因加性效应值为14.7,多基因加性效应值为20.9,多基因显性效应值为25.8.F2的遗传率为56.6%,F2∶3的遗传率为48.7%.因此,对雌雄同株黄瓜单性结实性的遗传改良,可选择强单性结实性材料,通过杂交、回交转移主基因,达到选育强单性结实性材料目的.  相似文献   

7.
黄瓜抗黑星病不同基因源的遗传分析   总被引:1,自引:0,他引:1  
基于苗期人工接种鉴定结果,获得2份抗黑星病黄瓜材料(HX1,Cucumis sativus var.sativus,DI=5;HX5,C.sativusvar.xishuangbannesis,DI=38.7)和1份感病材料(HX8,C.sativus var.sativus,DI=80)。利用上述3份材料构建了2个组合(HX1×HX8,HX5×HX8)的6世代群体(P1、P2、F1、F2、B1和B2),并分别进行黑星病苗期人工接种鉴定。采用主基因+多基因联合遗传分析方法进行遗传分析,结果表明2份材料抗黑星病的遗传规律不同。组合HX1×HX8的F1单株表现为抗病,而组合HX5×HX8的F1单株基本表现为感病。HX1对黑星病的抗性符合两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E_1模型),HX5的抗性遗传符合加性-显性多基因模型(C模型)。在组合HX1×HX8中,两对主基因的加性效应均大于显性效应,B1、B2和F2群体的主基因遗传率分别为72.51%、98.19%和96.91%,多基因遗传率均为0,表明HX1对黑星病的抗性以主基因遗传为主;HX5对黑星病的抗性遗传以多基因的显性效应为主。  相似文献   

8.
以高抗CMV的烤烟品种台烟8号为母本(P1),以高感CMV的烤烟品种NC82为父本(P2),在2个不同的时间环境下构建P1、P2、F1和F24个世代群体,在植株不同生长时期进行CMV病害鉴定。运用植物数量性状"主基因+多基因"混合遗传模型分析方法对该世代群体的CMV抗性进行联合分析。结果表明,在温室环境中,苗期和成株期鉴定CMV抗性遗传都符合E1模型,即由2对加性-显性-上位性主基因+加性-显性多基因混合控制,主基因遗传率分别是37.11%、57.76%;在大田环境中,苗期抗性鉴定符合加性-显性-上位性多基因模型(C0),多基因遗传率为26.86%,而成株期鉴定属于2对主基因+多基因模型(E2),主基因遗传率为36.57%。研究表明,由于植物抗性基因的表达具有时空性,台烟8号对CMV的抗性遗传在不同的时间和环境具有一定的差异;但随着植株的生长,抗性遗传趋于稳定,在成株期时,2个不同的环境均表现为2对主基因+多基因控制,所以对烤烟CMV抗性品种选育和改良要以主基因为主,同时注重环境的影响。  相似文献   

9.
以烟草抗白粉病品种台烟7号为母本,感病品种NC89为父本,构建6个世代的群体,利用主基因 多基因混合遗传模型的分离分析方法,研究烟草白粉病的抗性遗传规律。结果表明,烟草白粉病抗性的遗传是由两对加性-显性-上位性主基因 加性-显性-上位性多基因(E-0模型)控制的。B1、B2和F2世代主基因的遗传率分别为88.05%、32.62%、84.43%,主基因遗传率很大,说明可以在抗病育种早期进行选择;B1、F2世代多基因遗传率均为0.00%,说明烟草白粉病的发生受一定环境影响。  相似文献   

10.
羽衣甘蓝裂叶相关性状遗传分析   总被引:1,自引:0,他引:1  
以羽衣甘蓝圆叶自交系‘0835’和裂叶自交系‘0819’为亲本,调查P1、P2、F1、F2群体莲座期4个裂叶相关性状表型数据,运用‘四世代主基因+多基因’遗传模型,对叶长、叶宽、叶形指数、叶缘缺刻数4个叶形相关性状进行遗传分析,探讨羽衣甘蓝裂叶相关性状的遗传规律,为羽衣甘蓝裂叶性状遗传、QTL定位及新品种选育奠定基础。结果表明:(1)4个性状均存在一定的杂种优势,其中叶缘缺刻数中亲优势达显著水平,4个性状均存在负向超亲优势。(2)叶长和叶宽均符合E-4模型,即由2对等加性主基因+加性-显性多基因共同控制;叶长主基因遗传率为83.80%,多基因遗传率为1.05%;叶宽主基因遗传率为22.28%,多基因遗传率为61.92%。(3)叶形指数和叶缘缺刻数均符合E-1模型,即由2对加性-显性-上位性主基因+加性-显性多基因控制;叶形指数主基因遗传率为93.73%,多基因遗传率为2.59%;叶缘缺刻数主基因决定了表型变异的91.18%。  相似文献   

11.
质量—数量性状遗传参数估计的P1,P2,F1,B1,B2联合分析方法   总被引:2,自引:1,他引:1  
提出利用亲本P_1和P_2、杂种F_1、回交B_1和B_1五个世代联合分析包括两个位点主基因控制的质量-数量性状遗传的统计方法,共建立了可供选择的微基因遗传、一对主基因+微基因混合遗传、二对主基因+微基因混合遗传三类五种(套)共 28个遗传模型,采用 AIC信息准则选择最适模型,并通过适合性检验对所选择的遗传模型做进一步的检验.文章最后还讨论了两种变型设计.  相似文献   

12.
QTL作图和主基因+多基因混合遗传分析表明:拓展两对基基因+多基因混合遗传模型十分必要。本文利用混合分布理论,AIC准则在回交B1和B2群体或F2群体中鉴定两对主基因的存在,当主基因存在时估计其遗传参数;同时还改进了利用亲本,F1和回交B1和B2群体,或亲本,F1和F2群体鉴定多基因存在的方法,分布参数的估计采用IECM算法,以水稻株高性状为例说明该方法的应用。  相似文献   

13.
辣椒株高遗传分析   总被引:4,自引:3,他引:4  
以辣椒矮秆自交系B9431(P1)和高秆自交系‘吉林长椒’(P2)为双亲,构建P1、F1、P1、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因+多基因混合遗传模型对该6个世代群体株高进行多世代联合分析,结果显示:株高遗传符合1对主基因+多基因遗传模型,高秆对矮秆表现为不完全显性,F1代株高的势能比值为0.39,显性程度为0.91。B1、B2和F2群体主基因遗传率分别为20.35%、17.20%和35.29%,多基因遗传率分别为5.08%、19.75%和0;主基因效应表现为负向加性效应,其值为-6.43,显性效应为0;多基因加性效应值和显性效应值分别为-8.89和9.77。研究还表明,主基因与多基因间的基因效应存在一定差异,主基因加性效应值相当于多基因加性效应值的72.33%,主基因无显性效应,显性效应是由多基因控制遗传。  相似文献   

14.
从粳稻(Oryzasativassp.japonica)RIL群体中选取每穗颖花数极端少的品系丙堡3201和丙堡3205及每穗颖花数极端多的品系丙堡3145和丙堡3214,配制丙堡3201×丙堡3145和丙堡3214×丙堡3205两个组合的P1、P2、F1、B1、B2和F26个世代,调查每穗颖花数、每穗实粒数、穗长、一次枝梗数和二次枝梗数的表型分布,并运用主基因+多基因混合遗传模型,对这5个性状进行了遗传分析。结果表明,每穗颖花数性状在2个组合的各分离世代均未出现超亲分离,而其它4个性状均有不同程度的超亲分离。一次枝梗数受1对主基因+多基因控制;其余4个性状均受2对主基因+多基因控制。每穗颖花数、每穗实粒数、穗长和二次枝梗数4个性状以主基因遗传为主,一次枝梗数性状以多基因遗传为主。  相似文献   

15.
为了进行2对主基因+多基因混合遗传分析中的主基因存在的鉴定和多基因存在的鉴定以及多世代的联合遗传分析的分布参数估计,在ECM算法和剖分成分分布方差为主基因变异组分、多基因变异组分和误差变异组分三部分基础上,提出了计算简便的迭代ECM算法,简称IECM算法,以利用 P_1、F_1、P_2和 F_(2:3)家系世代鉴定多基因存在为例阐明该算法.它的 CM步包含迭代CM_1、迭代CM_2和迭代CM_3步,在固定其它参数的情况下分别求分布平均数、多基因方差组分和误差方差的极大似然估计.通过1138-2x邳县天鹅蛋杂交组合的P_1、P_2、F_1和F_(2:3)家系群体研究了大豆豆秆黑潜蝇的遗传规律.结果表明,它受 1对主基因的控制并有多基因的修饰.  相似文献   

16.
水稻丽粳2号近等基因系杂种后代耐冷性遗传研究   总被引:7,自引:0,他引:7  
在昆明低温冷害条件下,以十和田×(十和田和丽粳2号BC4F5)配制的杂种BC5F1、BC5F2、BC5F3和BC5F4及亲本为材料,用主基因-多基因混合遗传模型对丽粳2号作耐冷基因供体培育出的近等基因系进行孕穗期耐冷性遗传研究。结果表明:(1)杂种BC5F2、BC5F3和BC5F4分离群体在同一世代每穗实粒数与总粒数、结实率呈极显著的正相关;(2)以结实率为耐冷性鉴定指标,近等基因系孕穗期耐冷性受2对主基因和多基因共同控制,其主效基因的遗传率为90.97%,微效基因遗传率为3.83%,主基因和微效基因都存在加性-显性-上位性效应。  相似文献   

17.
氮高效玉米主要性状的遗传分析   总被引:3,自引:0,他引:3  
向春阳  田秀平  董炳友  杨克军 《遗传》2005,27(3):387-390
采用两个氮高效玉米杂交组合的P1、P2、F1、F2、B1、B2世代,随机区组试验设计,对氮高效玉米主要性状的遗传力进行了研究。研究结果表明,不同氮水平下氮高效玉米各性状的遗传力是不同的。低氮处理中,广义遗传力介于0.78~0.46之间,狭义遗传力介于0.68~0.23之间;高氮处理中,广义遗传力介于0.76~0.49之间,狭义遗传力介于0.67~0.25之间。低氮条件下,氮高效玉米主要性状中抽丝期穗位叶叶绿素含量、氮效率、穗重和穗位叶叶面积,高氮条件下,抽丝期生物量、穗重、抽丝期穗位叶叶绿素含量和成熟期生物量等性状的遗传力较高,可分别在低氮、高氮条件下,对其进行早代选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号