首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Serum levels of phospholipase A2 (PLA2) activity have been shown to be elevated in cases of septic shock and rheumatoid arthritis. The cellular origin of serum PLA2, however, is not known. In this report, we demonstrate that human group II PLA2 expression and secretion are induced in hepatoma cells (HepG2) following treatment with interleukin-6 (IL-6), tumor necrosis factor (TNF), and interleukin-1 (IL-1). Of the three cytokines, IL-6 is the most potent. Significant synergy is observed between IL-6 and IL-1 and between IL-6 and TNF, but not between IL-1 and TNF. PLA2 induction does not occur in human YT cells, which are known to have receptors for both IL-1 and IL-6, indicating that the regulatory mechanism involved is cell type-specific. The results of RNA blot analysis indicate that the PLA2 gene is regulated in HepG2 cells at the pretranslational level. Induction of PLA2 synthesis in HepG2 cells in response to these cytokines resembles the induction of the acute phase plasma proteins which are synthesized in cultured hepatocytes and hepatoma cells following exposure to the same cytokines and in liver in response to inflammation and infection. In addition, a putative IL-6-responsive element, which is homologous to a similar element found in several acute phase genes, is present in the 5'-promoter-proximal region of the PLA2 gene. These results suggest that serum PLA2 is synthesized in and secreted from liver cells in response to inflammatory stimuli, mediated primarily by IL-6, and therefore should be classified as an acute phase protein.  相似文献   

4.
5.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

6.
Gene regulation by interleukin 6   总被引:1,自引:0,他引:1  
  相似文献   

7.
Several well-differentiated human hepatoma cell lines (HepG2, Hep3B) have been used to identify factors which regulate hepatic gene expression during the host response to inflammation/tissue injury (acute phase response). Studies in these cell lines, as well as in primary cultures of rat, rabbit, and mouse hepatocytes, have demonstrated that interleukin-1 beta (IL-1 beta), tumor necrosis factor (TNF-alpha), and interferon-beta 2 (IFN-beta 2) each mediate changes in expression of several hepatic acute phase genes. In this study we identify a subclone of the HepG2 cell line in which there is a selective defect in IL-1 beta-mediated acute phase gene expression. Recombinant human IL-1 beta mediates an increase in synthesis of the positive acute phase complement protein factor B and a decrease in synthesis of negative acute phase protein albumin in the parent uncloned HepG2 cell line (HG2Y), but not in the subclone HG2N. Recombinant human IFN-beta 2 and TNF-alpha, however, regulate acute phase protein synthesis in the subclone HG2N; i.e. IFN-beta 2 and TNF-alpha increase synthesis of factor B and decrease synthesis of albumin in both HG2Y and HG2N cells. Equilibrium binding analysis with 125I-rIL-1 beta at 4 degrees C showed that both HG2N and HG2Y cells bind IL-1 beta specifically and saturably. HG2N and HG2Y possess 3.8 and 4.0 x 10(3) plasma membrane receptors/cell with affinities of 0.96 and 1.07 x 10(-9) M, respectively. Thus, the defect in this subclone of the HepG2 cell line is likely to involve the signal transduction pathway for the biological activity of IL-1 beta and will be useful in elucidation of this signal transduction pathway.  相似文献   

8.
9.
Human hepatoma (HepG2) cells respond to unfractionated conditioned media of human squamous carcinoma (COLO-16) cells and lipopolysaccharide-stimulated human peripheral blood monocytes by increasing the synthesis of alpha 1-acid glycoprotein, haptoglobin, complement C3, alpha 1-antichymotrypsin, alpha 1-antitrypsin, and fibrinogen, while decreasing the synthesis of albumin. The regulation of the acute phase proteins is mediated by hepatocyte-stimulating factors (HSF) and interleukin 1 (IL-1) present in the conditioned medium. Purified HSF-I from COLO-16 cells stimulates preferentially alpha 1-acid glycoprotein synthesis, whereas COLO-HSF-II stimulates preferentially the synthesis of haptoglobin, fibrinogen, and alpha 1-antitrypsin. HSF from monocytes, which has been identified as interferon-beta 2 (B cell stimulating factor-2), displayed the same activity as COLO-HSF-II. Dexamethasone alone had no effect on acute phase plasma protein synthesis but enhanced the response to various HSF severalfold. IL-1 had a relatively low stimulatory activity on the synthesis of alpha 1-acid glycoprotein, haptoglobin, and alpha 1-antichymotrypsin but strongly reduced the basal expression of fibrinogen. The only synergistic action between IL-1 and HSF (or interferon-beta 2) was noted for the synthesis of alpha 1-acid glycoprotein. Tumor necrosis factor active on other hepatic cells failed to modulate significantly the expression of any plasma proteins in HepG2 cells. These studies showed that for an optimal HepG2-cell response a combination of HSF (or interferon-beta 2), IL-1, and dexamethasone is needed. This finding might indicate the identity of some of those hormones involved in regulation of the hepatic acute phase response in vivo.  相似文献   

10.
11.
12.
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure.  相似文献   

13.
14.
It is known that during acute phase reaction IL-6 activates STAT3 in hepatoma cells and IL-1 downregulates this response. We found that the inhibitory properties of IL-1 on STAT signalling cascade in human hepatoma HepG2 cells are considerably decreased not only in the presence of MAP kinase inhibitors SB203580 and PD98059 but also by some antioxidants (N-acetyl cysteine and pyrrolidine dithiocarbamate) and by anti-inflammatory cytokine IL-4. It appears that cytokine crosstalk between IL-6 and IL-1 includes a direct pathway sensitive to antioxidants and MAP kinase inhibitors, whereas the indirect prolonged response depends probably on synthesis of suppressors of cytokine signalling (SOCS).  相似文献   

15.
16.
The acute phase response is an evolutionarily conserved response of the liver to inflammatory stimuli, which aids the body in host defense and homeostasis. We have previously reported that CCAAT enhancer-binding protein alpha (C/EBPalpha) is required for the induction of acute phase protein (APP) genes in newborn mice in response to lipopolysaccharide. In this paper, we describe a mechanism by which C/EBPalpha knock-out mice are unable to induce APP gene expression in response to inflammatory stimuli. We demonstrate that the lack of acute phase response in C/EBPalpha knock-out mice is because of a hepatocyte autonomous defect. C/EBPalpha knock-out hepatocytes do not activate STAT3 in response to recombinant interleukin (IL)-6, indicating a defect in the IL-6 pathway. C/EBPalpha knock-out hepatocytes also do not show activation of other IL-6 receptor (IL-6R)-mediated Janus kinase substrates, gp130, SHP-2, and Tyk2. Further examination of the IL-6 pathway demonstrated that C/EBPalpha knock-out hepatocytes have decreased IL-6Ralpha protein levels caused, in part, by reduced protein stability. However, other components of the IL-6 pathway are intact, as demonstrated by rescue of STAT3 activation and APP gene induction with recombinant-soluble IL-6R linked to IL-6 cytokine (Hyper-IL-6) or with another gp130 signaling cytokine, Oncostatin M. In conclusion, C/EBPalpha is required for the proper regulation of IL-6Ralpha protein in hepatocytes resulting in a lack of acute phase protein gene induction in newborn C/EBPalpha null mice in response to lipopolysaccharide or cytokines.  相似文献   

17.
18.
The murine T lymphoma line, LBRM-33 1A5, requires synergistic signals delivered by phytohemagglutinin (PHA) and interleukin 1 (IL1) for activation to high level interleukin 2 production. The activation signals provided by PHA and IL1 were replaced by the Ca2+ ionophore, ionomycin, and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), respectively. These observations supported a two-signal model for T cell activation involving increases in intracellular Ca2+ concentration ([Ca2+]i) (signal 1) and activation of protein kinase C (signal 2) as necessary and sufficient events. However, biochemical analyses revealed that additional signals were involved in the activation of LBRM-33 cells by both receptor-dependent and -independent mediators. Both signal 1-type mediators, PHA and ionomycin, exerted pleiotropic effects at the concentrations required for synergy with signal 2-type mediators (IL1, TPA). Within 1-2 min of addition, PHA stimulated phospholipid turnover, including hydrolysis of phosphatidylinositol 4,5-bisphosphate, Ca2+ mobilization, and protein kinase C activation. The [Ca2+]i increase induced by PHA was due to influx from both intracellular and extracellular Ca2+ pools. Similarly, ionomycin increased phospholipid turnover, [Ca2+]i, and directly affected protein kinase C activity in LBRM-33 cells. In contrast, the signal 2-type mediators, TPA and IL1, appeared to act by distinct intracellular mechanisms. TPA induced a protracted association of cellular protein kinase C with the plasma membrane, consistent with the two-signal activation model. Furthermore, acute TPA treatment inhibited PHA-stimulated inositol phosphate release and Ca2+ mobilization, suggesting that this mediator partially antagonized signal 1 delivery. IL1, in contrast, neither activated protein kinase C directly nor did it positively modulate the coupling of signal 1-type mediators to [Ca2+]i or protein kinase C via the phosphoinositide pathway. The intracellular signal delivered by IL1 is, therefore, generated through a mechanism distinct from or distal to the activation of protein kinase C. These studies indicate that the two-signal hypothesis, in its simplest form, is inadequate to explain the signals required for the initiation of IL1-dependent T cell activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号