首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

2.
Abi Salloum B  Claus R 《Theriogenology》2005,63(8):2181-2193
A study with 93 German Merino ewes was performed from January until the end of March to clarify the relative importance of lactation, photoperiodism and ram effect on cyclic activity and lambing data. Ovarian activity was registered by progesterone concentrations in blood plasma three times weekly. Half of the ewes were kept under supplemental light (20 h/day) for the last 6 weeks of lactation and additionally 3 weeks post-weaning, the other half were kept under natural photoperiod but were weaned simultaneously. Thereafter, light was reduced to natural photoperiod and rams were introduced to half of the ewes, of both light reduced and photoperiod group. Ewes entered cyclicity during lactation gradually, but at weaning 56% of photoperiod ewes and 53% of supplemental light ewes were still acyclic. After weaning, resumption of cyclic activity before ram introduction was more pronounced (P<0.05) in the photoperiod group (75% cyclic) than in the supplemental light group (51% cyclic). Ram introduction led to cyclicity in all ewes. Light reduction without ram slightly increased cyclicity but 57% were still acyclic. In the photoperiod group without ram no ewe entered cyclicity and two ewes even ceased cycling again. Data show that German Merinos still have a remarkable lactational anoestrus but are extremely sensitive to ram. Light reduction has no direct effect on cyclicity but is likely to contribute to the elevated ovulation rate so that a combination with the ram effect led to a higher lambing rate (1.94) compared to photoperiod and ram (1.55).  相似文献   

3.
Ovarian follicular development was characterized in 24 Spanish Merino ewes to study effects of the follicular status and the FSH commercial product used on follicular growth and subsequent superovulatory response. Estrus was synchronized using 40 mg fluorogestone acetate sponges. The superovulatory treatment consisted in 2 daily i.m. injections of FSH from 48 h before to 12 h after sponge removal. Sheep were assigned randomly to 2 groups treated with 6 decreasing doses (4, 4, 3, 3, 2, 2 mg) of FSH-P or with 6 doses of 1.25 mL of OVAGEN. Growth and regression of all follicles > or = 2 mm were observed by transrectal ultrasonography, and recorded daily from Day 6 before sponge insertion to the first FSH injection, and then twice daily until estrus was detected with vasectomized rams. Differences were detected in follicular development from the first FSH injection to detection of estrus (-48 to 36 h from sponge removal) between groups. Administration of FSH-P increased the appearance of new follicles with respect to OVAGEN (6.3 +/- 0.7 vs 4.8 +/- 0.4; P < 0.05), and the mean number of medium (4 to 5 mm) follicles (8.9 +/- 1.2 vs 6.6 +/- 0.9; P < 0.05). However, the mean number of follicles that regressed in size after sponge removal (5.9 +/- 0.4 vs 3.3 +/- 0.4) and the number of preovulatory sized follicles that did not ovulate (60 vs 42.4%) were also higher in FSH-P treated ewes (P < 0.05). So, finally, there were no differences in ovulation rate, as determined by laparoscopy on Day 7 after sponge removal, between ewes treated with FSH-P or OVAGEN (6.3 +/- 1.9 vs 7.0 +/- 1.7 CL). In all the ewes, the ovulatory response was related (P < 0.05) both to the number of small follicles (2 to 3 mm in diameter) present in the ovaries at the start of treatment with exogenous FSH and to the number of follicles that reached > or = 4 mm in size at estrus, despite differences in the pattern of follicular development when using different commercial products.  相似文献   

4.
Charcoal-treated bovine follicular fluid (bFF) given as four 5-ml subcutaneous injections to 13 Merino-Border Leicester ewes around the time of natural luteolysis suppressed (P<0.01) plasma levels of follicle stimulating hormone (FSH) [from 1.08 ± 0.05 to 0.41 ± 0.03, mean ± s.e.m. of loge (ng+ 1) /mlplasma]. This was followed (P < 0.01) by hypersecretion or a rebound of FSH (to 1.46 ± 0.11) lasting 32 h in 10 of the treated ewes, and then by a further fall (to 0.73 ± 0.03, P < 0.05) before the surge (1.21 ± 0.07, P < 0.05) associated with the preovulatory surge of luteinizing hormone (LH).Plasma FSH at 56–72 h before the LH surge (i.e., at the time of the FSH rebound) was correlated with the subsequent ovulation rate (n=13, r= + 0.73, P < 0.01). Fewer ewes treated with four injections of 2 or 5 ml of bFF than control ewes (injected with bovine plasma) became pregnant (28 of 41 vs. 38 of 41, χ2 = 4.05, P < 0.05), although plasma progesterone was similar at Day 11 in treated and control ewes. It is concluded that plasma FSH during such a rebound influences the subsequent ovulation rate in sheep.  相似文献   

5.
An experiment was conducted to ascertain if follicles could reach ovulatory size after the largest follicle (dominant) has been removed at different times during a progestin treatment in anestrous ewes, and secondly to determine if these new follicles could respond to an hCG-induced ovulation and have similar function as corpora lutea. Mature crossbred sheep (n=44) in anestrous were treated with an intravaginal sponge containing 40 mg of FGA (day 0=sponge insertion) for 9 days. Treatments consisted of cauterization of the largest follicle on the experimental day 3 (T1), day 6 (T2) and day 9 (T3); day 12 to ascertain the size of the largest follicle in control ewes. During laparotomies, the diameters of the largest follicle (DF), and those of the second and third largest follicles (SF1 and SF2, respectively) were determined. On day 12, a second laparotomy was performed for those ewes which had their DF cauterized on days 3, 6 and 9, a fourth group was left intact and only laparotomized on day 12. At this time, the size of the new DF, SF1 and SF2 were determined. Immediately after the laparotomy on day 12, all the ewes were treated with 1000 i.u. of hCG to induce ovulation. Blood samples were collected daily from day 0 to 50 and samples were analyzed for progesterone concentrations. The size of the DF at the time of sponge removal was smaller that those observed on day 3 or 6 of sponge suggesting that follicles in ewes treated with this progestin regress and a new wave of follicular development ensues between day 6 and the time of sponge removal. The size of the DF on day 12 was also smaller in ewes that have the largest follicle removed at the time of sponge removal reflecting that these follicles had a shorter period of growth; however, the rate of growth was greater for these follicles than for follicles arising after cauterization on day 3 or 6 after sponge insertion. There were no differences among treatments, in the number of ewes that formed a corpus luteum (CL) in response to hCG. Life span of the corpora lutea did not differ among ewes having their DF removed on day 6 or 9 or those that served as controls, however, ewes that had their DF removed on day 3 developed longer lived CL in a larger proportion of animals. Average progesterone concentration during the life span of the induced corpora lutea was greater in control ewes than in any other experimental group. These observations allow us to conclude that, (a) the follicular dynamics observed in anestrous ewes treated with a progestin intravaginal sponge resembles that observed during the normal estrous cycle in the ewe; (b) the effects of progesterone on life span of the corpus luteum could not be only related to direct effects at the follicle but also involve changes in other components of the uterine-ovarian-hypothalamic axis; (c) the mechanisms controlling luteal life span seem to be different to those mechanisms controlling the function of the induced corpus luteum.  相似文献   

6.
The objective was to determine the effect of dietary intake on follicle and oocyte morphology in unstimulated and superovulated ewes. Fifty-four ewes were fed grass meal at 0.5, 1.0 or 2.0 times maintenance energy requirements (M) for 32 days. Oestrous cycles were synchronized using progestagen pessaries and either unstimulated or superovulated with 200 mg pig FSH. The ewes were killed and ovaries were collected either 36 or 12 h before the anticipated LH surge. Serum progesterone concentrations in ewes on day 10 after withdrawal of the pessary were lower in ewes fed 2.0M than in ewes fed 0.5M or 1.0M (P < 0.05). LH pulse frequency tended to be higher in ewes fed 2M than 1M (1.0 +/- 0.3 versus 0.3 +/- 0.2 pulses per 8 h) on day 6 after removal of the pessary but the effect was not significant. In unstimulated ewes, more follicles (>/= 3 mm) were observed when the animals were killed in ewes fed 2.0M (3.5 +/- 0.3) than in ewes fed 0.5M (2.4 +/- 0.3) or 1.0M (2.4 +/- 0.5; P < 0. 05). Fewer follicles were observed in superovulated ewes on 0.5M (7. 5 +/- 1.2) than in ewes on 1.0M (12.0 +/- 0.5) or 2.0M (12.3 +/- 1. 4; P < 0.05). Follicular fluid progesterone concentrations were higher in ewes fed 0.5M compared with those fed 1M or 2M (P < 0.05). Insulin-like growth factor (IGF)-I concentrations were higher in follicular fluid from ewes on 1M compared with either those on 0.5M or 2M (P < 0.05), whereas IGF-II concentrations were lower in follicular fluid from ewes on 2M compared with those on 1M or 0.5M (P < 0.05). Superovulation increased follicular fluid progesterone, oestradiol, IGF-I and IGF-II concentrations (P < 0.01). Concentrations of the 34, 22 and 20 kDa IGF binding proteins were lower in follicles from superovulated ewes compared with unstimulated ewes (P < 0.05). Oocytes from superovulated ewes showed abnormalities such as premature activation of cumulus expansion and vacuolation of the nucleolus and increased frequency of detachment of interchromatin-like granules from the nucleolar remnant. Collectively, these results indicate that both high and low dietary intakes can alter systemic and follicular fluid hormone concentrations. Relative to dietary effects, the effects of superovulation were greater and involved substantial increases in follicular fluid hormone concentrations and abnormal oocyte morphology.  相似文献   

7.
The induction of estrus in 17 previously cycling nulliparous ewes, 9 to 10 months of age, was attempted with Medroxyprogesterone acetate (MAP) pessaries during the early anestrous period (March-April). Ewes were verified to be anestrous by the lack of estrous behavior in the presence of a vasectomized ram and by a radioimmunoassay for serum progesterone in two samples taken 7 days apart showing less than 1 ng/ml serum progesterone. Superovulation was attempted with injections of either FSH or FSH + LH. MAP vaginal pessaries remained in place for a period of 12 days and FSH was administered to all ewes (IM) at 12 hr intervals over a 3 day period; 5 mg was injected twice on day 11 after pessary insertion, followed by 4 and 3 mg injections twice daily on each succeeding day, for a total of 24 mg per ewe. Nine ewes were given 25 mg LH (IV) within 8 hrs after the onset of behavioral estrus in addition to FSH. Ewes were hand-mated to several rams at 12 hr intervals throughout the estrus period. Ovulation and fertilization rates were recorded for each ewe following midline laparotomy and embryo collection. All ewes were in estrus between 36 and 48 hrs after removal of the MAP pessaries. In ewes injected with FSH only, 8 of 8 ovulated with a mean ovulation rate of 6.0 +/- 4.4 and a fertilization rate of 70%. Nine of 9 ewes receiving both FSH + LH ovulated with a mean ovulation rate of 13.9 +/- 13.1 and a fertilization rate of 72%. Statistical analysis by Students t-test resulted in differences in number of ova recovered (P<.05) between FSH only and FSH + LH treated ewes and a trend towards increased ovulation rate in FSH + LH treated ewes. These results show that early seasonally anestrous ewes can be successfully induced and synchronized for estrus with MAP pessaries and the number of ova recovered is increased with the inclusion of LH in the superovulation regime.  相似文献   

8.
9.
Affinity chromatography of bovine follicular fluid using Matrix gel Red A resulted in a 20-fold increase in inhibin-like specific activity assessed in a mouse ovulation inhibition test system. When this material was emulsified with Freund's adjuvant and injected into adult Merino ewes their mean ovulation rate was increased from 1.2 to 2.3 (P less than 0.01). Follicles of diameter greater than or equal to 3.5 mm and 2-3.4 mm were also increased (4.33 vs 2.25 and 5.39 vs 2.44 per ewe respectively). The ovulation rate response was variable and transient. Length of oestrous cycles, number of granulosa cells per follicle and seasonal oestrous patterns were not affected. Plasma from the immunized ewes contained antibodies to the immunogen and reversed the ovulation-inhibiting effects of bovine follicular fluid in mice.  相似文献   

10.
The embryos of ewes were killed with colchicine on Day 17 of gestation and the ewes were mated at the subsequent oestrus. Fertility was reduced at this mating, and fewer spermatozoa were found in the uterus and oviducts than in control animals. The total number of spermatozoa in the cervix and their distribution between the lumen and walls of the cervix were not altered, but the linear distribution along the cervical walls was changed. The density of the reamining spermatozoa in the control animals after flushing the cervix showed a progressive decrease from the posterior to the anterior segments. This did not occur in the untreated ewes. It seems likely that impaired sperm transport contributed to the lowered fertility.  相似文献   

11.
Ewes were immunized against androstenedione (Fecundin) and assigned to be mated 14 days (179 ewes Group C) or 25 days (174 ewes Group B) after a booster immunization with Fecundin. The anti-androstenedione titres at these times were 6790 and 3240 respectively (P less than 0.01). The remaining 169 ewes were untreated controls (Group A). Ewes were mated to entire rams (12 rams to 180 ewes) at their second oestrus after synchronization of oestrus. Immunization against androstenedione caused a shortening of the time from sponge removal to mating (Day 0) and a decrease in the percentage of ewes mated by the rams. Also, ovulation rate was increased after immunization (P less than 0.01), being 1.42, 2.16 and 1.93 for Groups A, C and B respectively. Egg recovery rates on Day 2 were lower in immunized ewes and there was some indication that fertilization rates were lowered. On Day 13 after mating a higher proportion of blastocysts was recovered from ewes in Group A than from those in Groups B and C. Immunization resulted in lower fertilization rates and smaller blastocysts with lower mitotic indexes (P less than 0.01). At Days 24-32 of pregnancy fetal weight was lower in the immunized ewes. At all sampling stages, the proportion of ewes pregnant (fertility) was lowered in immunized ewes. The results of the present study show that significant reproductive wastage occurs in androstenedione-immunized Merino ewes, with lower rates of embryo recovery and delayed embryonic development being found in comparison to controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The fertility enhancing effects of semen were examined following the intra-uterine insemination of killed spermatozoa plus seminal plasma 17 d prior to insemination with viable spermatozoa. Three experiments were conducted: two on 1.5-yr old and 2.5 to 5.5 yr-old Booroola Merino x South Australian Merino ewes in 1986 and one on 1.5 yr-old ewes in 1987. Differences between treatment and control groups for the percentage of ewes exhibiting estrus by Days 21 and 35 following fertile insemination, the percentage of ewes with viable embryos at Day 35, the number and weight of viable embryos per ewe, the nubmer of caruncular implantation sites and the progesterone level were not statistically significant (P>0.05). There were no statistically significant treatment by experiment interactions for any of the variables examined. Inflammation and edema of the endometrial tissue was not observed following the presensitization treatment.  相似文献   

13.
The paper presents an example of a new type of a structured model containing time delays in parallel branches. This model was selected as optimal to describe mathematically the lymphocyte migration between the venous blood and prescapular lymph in Merino ewes under physiological conditions. The model allowed to identify and quantify several lymphocyte fractions exhibiting different migration dynamics.  相似文献   

14.
Windsor DP 《Theriogenology》1995,43(6):1009-1018
The experiments described examined the effects of a number of factors on the level of uterine insemination achieved in Merino ewes by a transcervical insemination technique (Guelph system for transcervical artificial insemination; GST-AI). Cervical penetration rate is an important limitation to the use of such methods in Merinos. Simulated insemination was performed to estimate the proportion of ewes in which a pipette could be passed through the cervix to the uterus. In Experiment 1, cervical penetration rate (n = 14 to 30) was unaffected by an increase in postpartum interval at AI from 12 to 26 wk. The results of cervical penetration for individual ewes were found to be repeatable (P < 0.05). Experiment 2 (197 ewes) revealed a clear effect of ewe parity on penetration rates in hormonally synchronized ewes during the nonbreeding season (P < 0.05). In Experiment 3, estrus synchronization using progestagen (n = 51) or prostaglandin (n = 50) did not affect penetration rate. The penetration rate was slightly higher in the naturally cycling ewes, but the difference was not significant. Comparison of ewes from Experiments 2 and 3 suggests the possibility of a major effect of stage of the breeding season on the penetration rate (P < 0.05). It is concluded that ewe selection and management techniques may be used to increase the proportion of transcervical insemination attempts resulting in uterine insemination. However, fertility testing will be required to determine whether such improvements translate into correspondingly increased pregnancy rates.  相似文献   

15.
The presence of a fecundity gene (F) in Booroola Merino ewes increases the ovulation rate. To test how F gene expression affects the gonadotrophin-releasing hormone (GnRH) concentration in hypothalamic or extrahypothalamic regions of the brain, GnRH was measured by radioimmunoassay in acetic acid extracts of various brain tissues from Booroola ewes which were homozygous (FF), heterozygous (F+) or non-carriers (++) of the F gene. The GnRH concentration in brain tissues from FF, F+ and ++ animals which had been ovariectomized 5 months previously was also evaluated. No significant F gene-specific differences were noted in any of the brain areas tested, in intact or ovariectomized animals. However, in ovariectomized ewes, the concentrations of GnRH increased about 2-fold in the median eminence of the hypothalamus, remained unchanged in the medial basal hypothalamus and dropped to less than 10% of the values in intact ++ animals in the preoptic area. These studies suggest that the changed pituitary sensitivity and increased gonadotrophin release in Booroolas carrying the F gene(s) is not attributable to increased hypothalamic GnRH concentrations in these animals.  相似文献   

16.
We compared conventional methods for laparoscopic and cervical artificial insemination (AI) to a transcervical AI procedure (Guelph System for Transcervical AI; GST-AI) for use with frozen semen in Merino ewes. The GST-AI procedure was performed by an experienced operator in Experiment 1 (771 ewes) and by 2 inexperienced operators in Experiment 2 (555 ewes). In Experiment 1, intrauterine insemination by GST-AI was achieved in 76% of the ewes. The pregnancy rate at Day 70 for ewes inseminated by laparoscopy (48%, 120 251 ) was higher (P<0.01) than for ewes inseminated by either intrauterine GST-AI (32%, 64 201 ) or cervical AI (9%, 24 256 ). The overall (intrauterine and intracervical) pregnancy rate for GST-AI was 26% (68 264 ) and was unaffected by depth of insemination within the cervix. Pregnancy rates were unaffected by ram or day of insemination. In Experiment 2, the operators achieved intrauterine inseminations by GST-AI in 43% (78 182 ) of the ewes, with a significant operator effect (P<0.01) on depth of cervical penetration. The pregnancy rate to intrauterine GST-AI (40%, 31 78 ) did not differ from that to laparoscopic insemination. The total pregnancy rate for GST-AI in Experiment 2 (19%, 34 182 ) was lower (P<0.05) than that for laparoscopic AI (39%, 72 187 ) but superior (P<0.05) to that for cervical AI (1%, 1 186 ). The GST-AI pregnancy rates were affected by depth of AI (P<0.01) and by operator (P<0.05). It is concluded that GST-AI is superior to cervical AI, and may have application in Merinos if cervical penetration rates can be improved.  相似文献   

17.
Plasma FSH, LH, estradiol (E2) and progesterone (P4) profiles and patterns of follicular growth and regression by ultrasonography were determined after E2 treatment (1 microg/kg) in anestrous ewes. Fifteen ewes were treated with one (group I, n=7) or two (group II, n=4) i.m. injections of E2 with a 24h interval, or two oil injections with a 24h interval (group C, n=4). Blood samples for E2, P4, FSH and LH determinations were collected daily 4 days before the initiation of the treatment (day 0), when bleeding increased to every 2h starting 2h before treatment until 56h after the first injection and from then on every 6h until day 8, and twice per day till the end of the experiment (day 9). During the experimental period (days -4 to 9), transrectal ultrasonic examinations were carried out daily using a 7.5 MHz linear array probe. Number and size of follicles > or =3mm in diameter were recorded. No estrous was detected before, during or after treatment. LH and FSH surges were observed 10-18h after the first E2 injection. The second E2 injection stimulated another release of LH but no surges. E2 inhibited FSH levels before the surge and the second E2 injection induced a longer inhibition. No ovulation was detected by ultrasonography during the experimental period and P4 levels remained low (<0.7 nmol/l) before, during and after the treatment in all ewes. There was an effect of E2 treatment on the diameter of the largest follicle, a decrease could be observed 3 days after the first injection in both ewes of groups I and II. The E2-treated groups had a higher frequency of ewes showing wave emergence on day 3 (day 1.5+/-1,2.4+/-0.4 and 2.5+/-0.5 for control, groups I and II). LH and FSH surges were observed after E2 treatment, but were not able to provoke ovulation neither luteinization. In contrast, the treatment was associated with the regression of the largest follicle and with emergence of a new follicular wave on day 3.  相似文献   

18.
The results of laparoscopic insemination of 28,447 Australian Merino ewes with semen from 468 rams were used to study factors influencing pregnancy. The overall pregnancy rate was 71.7% (20,423/28,447). Pregnancy rates varied with type of progestagen implant, type and dosage of PMSG, fresh or frozen semen, wool type and number of ewes inseminated per hour. The pregnancy rate (64.6%) obtained with Medroxy-progesterone acetate (MAP) sponges, was significantly (P < 0.01) lower than with Fluorogestone acetate 30 mg (FGA 30; 74.7%) sponges, Fluorogestone acetate 40 mg (FGA 40; 72.1%) sponges, and Controlled Internal Drug Release (CIDR-G; 71.7%) implants. A PMSG dose of 200 IU resulted in significantly (P < 0.05) lower pregnancy rates (62.4%) compared with 250 IU (72.9%), 300 IU (79.1%) and > or = 375 IU (69.4%). The mean pregnancy rate for ewes administered Folligon PMSG was 71.9%, which was significantly higher (P < 0.001) than that of ewes treated with Pregnecol PMSG (65.8%). The use of Pregnecol PMSG and MAP sponges was associated, and thus their conditional effects could not be calculated. Ewes inseminated with fresh semen were significantly (P < 0.001) more likely to become pregnant (82.2%) than those inseminated with semen frozen in pellets (69.5%) or straws (71.6%). Ewes inseminated during the months of March, April or May (fall, 71.5%) were just as likely to become pregnant as those ewes inseminated in November, December, January or February (69.6%). Significantly (P < 0.05) fewer strong wool ewes become pregnant to laparoscopic AI, (67.6%) than fine (71.7%), fine medium (73%) or medium wool ewes. Significantly (P < 0.0001) more pregnancies (77.6%) were achieved when more than 55 ewes were inseminated per hour compared with fewer than 35 ewes per hour (63.4%).  相似文献   

19.
The effects of Booroola genotype (F+, ++); the number of ovulations per ewe (one, two or three); and the age of a ewe (2.5 yr vs 3.5 to 6.5 yr) on the percentage of ova fertilized, embryo loss and fetal loss were examined in Booroola x South Australian Merino ewes slaughtered on Days 4, 21 and 90 after insemination. Ewes slaughtered on Day 90 were examined by real-time ultrasound imaging (RUI) on Day 45. Fertilization failure was independent of ewe genotype, ovulation rate and age of ewe, and it was not an important source of wastage (F+, 9.4%; ++, 6.7%). Most embryo loss occurred during the first 21 d (F+, 54.7%; ++, 40.3%). Interpretation of the effects of genotype and ovulation rate on embryo wastage measured on Days 21, 45 and 90 was obscured by significant (P < 0.05) genotype and ovulation rate interactions with the day of slaughter/RUI. The effect of age on embryo loss was not significant (P > 0.05). Reasons for the high rate of wastage observed in this experiment require further study.  相似文献   

20.
Fourteen buffalo were synchronized by administration of a prostaglandin (PG) salt Lutalyse in a double injection schedule, with a single intramuscular (im) injection of 25 mg at Day -13, followed by 30 mg and 20 mg im 12 h apart on Day 0 of the experiment. The 30-mg PG injection was designated as 0 h of the experiment. Group I animals (n = 4) received saline and served as the controls, while animals in Groups II and III (n = 5 each) received PMSG (2500 IU im at -48 h. Group III animals were administered 5 ml Neutra-PMSG intravenously at 60 h. Blood samples were collected every 48 h from Day -12 to Day -4, every 24 h from Day -4 to Day 0, every 3 h from Day 1 to Day 4 and every 24 h from Day 5 to Day 10 of experiment for the measurement of peripheral plasma inhibin concentrations by RIA. The number of large follicles (> 10 mm diameter) in animals of Groups II and III was assessed by ultrasonography on Days -2, -1, 0, 1, 2, 5 and 7 of the experiment. Treatment with PMSG of Group II animals resulted in a significant increase (P < 0.05) in plasma inhibin concentrations over that of control animals of Group I at 24 to 99 h, with a peak inhibin concentration of 1.01 +/- 0.31 ng/ml at 48 h. Treatment with Neutra-PMSG in Group III animals caused a significant reduction (P < 0.05) in the peripheral inhibin concentrations at 84 to 120 h and in the number of large unovulated follicles at 168 h compared with that in Group II animals. Peripheral inhibin levels in Group III animals came down to those of Group I after 21 h of Neutra-PMSG treatment. These results suggest that treatment of buffalo with PMSG for superovulation causes a marked rise in peripheral inhibin concentrations. Administration of Neutra-PMSG after PG treatment reduces the peripheral inhibin concentrations and the number of large unovulated follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号