首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P J Bilan  Y Mitsumoto  T Ramlal  A Klip 《FEBS letters》1992,298(2-3):285-290
Insulin-like growth factor I (IGF-I) rapidly (less than 10 min) stimulated glucose uptake into myotubes of the L6 muscle cell line, at concentrations that act specifically on IGF-I receptors. Uptake remained stimulated at a steady level for 1-2 h, after which a second stimulation occurred. The first phase was insensitive to inhibition of protein synthesis. Subcellular fractionation demonstrated that it was accompanied by translocation of glucose transporters (both GLUT1 and GLUT4) to the plasma membrane from intracellular membranes. Translocation sufficed to explain the first phase increase in glucose transport, and there was no change in the total cellular content of GLUT1 or GLUT4 glucose transporters. The second phase of stimulation was inhibitable by cycloheximide, and involved a net increase in either GLUT1 or GLUT4 transporter content, which was reflected in an increase in transporter number in plasma membranes. These results define a cellular mechanism of metabolic action of IGF-I in muscle cells; furthermore, they suggest that IGF-I has acute metabolic effects that mimic those of insulin, bypassing action on the insulin receptor.  相似文献   

2.
L6 myoblasts spontaneously undergo differentiation and cell fusion into myotubes. These cells express both GLUT1 and GLUT4 glucose transporters, but their expression varies during myogenesis. We now report that the subcellular distribution and the protein processing by glycosylation of both glucose transporter isoforms also change during myogenesis. Crude plasma membrane and light microsome fractions were isolated from either myoblasts or myotubes and characterized by the presence of two functional proteins, the Na+/K(+)-ATPase and the dihydropyridine receptor (DHPR). Immunoreactive alpha 1 subunit of the Na+/K(+)-ATPase was faint in the crude plasma membrane fraction from myoblasts, but abundant in both membrane fractions from myotubes. In contrast, the alpha 1 subunit of the DHPR, which is expressed only in differentiated muscle, was detected in crude plasma membrane from myotubes but not from myoblasts. Therefore, crude plasma membrane fractions from myoblasts and myotubes contain cell surface markers, and the composition of these membranes appears to be developmentally regulated during myogenesis. GLUT1 protein was more abundant in the crude plasma membrane relative to the light microsome fraction prepared from either myoblasts or myotubes. The molecular size in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the GLUT1 transporters in myotubes was smaller than that in myoblasts (Mr 47,000 and 53,000, respectively). GLUT4 protein (Mr 48,000) was barely detectable in the crude plasma membrane fraction and was almost absent in the light microsome fraction prepared from myoblasts. However, GLUT4 protein was abundant in myotubes and was predominantly located in the light microsome fraction. Treatment with endoglycosidase F reduced the molecular size of the transporters in all fractions to Mr 46,000 for GLUT1 and Mr 47,000 for GLUT4 proteins. In myotubes, acute insulin treatment increased the crude plasma membrane content of GLUT1 marginally and of GLUT4 markedly, with a concomitant decrease in the light microsomal fraction. These results indicate that: (a) the subcellular distribution of glucose transporters is regulated during myogenesis, GLUT4 being preferentially sorted to intracellular membranes; (b) both GLUT1 and GLUT4 transporters are processed by N-linked glycosylation to form the mature transporters in the course of myogenesis; and (c) insulin causes modest recruitment of GLUT1 transporters and marked recruitment of GLUT4 transporters, from light microsomes to plasma membranes in L6 myotubes.  相似文献   

3.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

4.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

5.
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.  相似文献   

6.
The aim of this study was to establish a rapid preparation of plasma membrane from adipocytes and muscle cells to detect translocated glucose transporter (GLUT) 4. A plasma membrane fraction was prepared by sequential centrifugation with buffer containing detergents, and its purity was estimated by detecting insulin receptor beta-subunit (IRbeta). After insulin stimulus, GLUT4 translocation was observed in 3T3-L1 adipocytes and L6 myotubes. It was found that IRbeta and GLUT4 levels on the plasma membrane decreased in adipose and muscle with intake of a 29% lard diet for 14 weeks. Hence, this method should be useful for rapid preparation of the plasma membrane fraction.  相似文献   

7.
Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous) uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.  相似文献   

8.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

9.
Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5’ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.  相似文献   

10.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

11.
Skeletal muscle stretch increases resting metabolism and causes hypertrophy. We have examined the effect of mechanical stretch in vitro on glucose transport activity and transporter contents in L6 muscle cells. Long-term (24-48 h) stretch-relaxation (25% maximal elongation at 30 cycles per min) of cell monolayers significantly increased glucose uptake by 1.6- to 2-fold in myotubes but not in myoblasts. The presence of serum was required for the stretch-relaxation induced increase in glucose uptake. Cycloheximide inhibited the mechanical stimulation of glucose uptake, and the latter response was not additive to the stimulatory effect of long-term exposure to insulin. GLUT1 and GLUT4 glucose transporter contents were not changed in total cell membranes from mechanically stimulated cells relative to controls. These results indicate that mechanical stimulation through passive stretch may be an important regulation of nutrient uptake in fetal myotubes independent of innervation.  相似文献   

12.
Artemisia princeps is a familiar plant as a food substance and medicinal herb. In this study, we evaluated the effects of an ethanol extract of A. princeps (APE) on glucose uptake in differentiated L6 muscle cells. Treatment with APE elevated deoxyglucose uptake, and translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane in L6 myotubes occurred. The PI3K inhibitor LY294002 attenuated glucose uptake induced by APE. Phosphorylation of the Ser(473) residue of Akt was not observed, but phosphorylation of PI3K, Akt (Thr(308)), and atypical PKC was. In addition, APE stimulated phosphorylation of AMP-activated protein kinase (AMPK) at a level similar to 5'-amino-5-imidazolecarboxamide-riboside (AICAR). These results indicate that APE stimulates glucose uptake by inducing GLUT4 translocation, which is in part mediated by combination of the PI3K-dependent atypical PKC pathway and AMPK pathways.  相似文献   

13.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

14.
A functional role for VAP-33 in insulin-stimulated GLUT4 traffic   总被引:1,自引:0,他引:1  
Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are critical proteins in membrane fusion, in both regulated and constitutive vesicular traffic. In addition, proteins that interact with the SNAREs are thought to regulate fusion. Vesicle-associated membrane protein-2 (VAMP-2) is a SNARE protein involved in insulin-dependent glucose transporter 4 (GLUT4) traffic. VAMP-2 is required for productive GLUT4 incorporation into the plasma membrane. VAMP-associated protein of 33 kDa (VAP-33) is an integral membrane protein that binds VAMPs in vitro , and is hypothesized to be a regulator of VAMPs. In L6 skeletal myoblasts, which display insulin-dependent traffic of GLUT4, we show that VAP-33 colocalized significantly with VAMP-2 using indirect confocal immunofluorescence and biochemical cosegregation. Overexpression of wild-type VAP-33 in L6 myoblasts attenuated the insulin-dependent incorporation of myc-tagged GLUT4 into the plasma membrane, and this response was restored by co-overexpression of VAMP-2 linked to green fluorescent protein. Antibodies to VAP-33 microinjected into 3T3-L1 adipocytes abrogated the insulin-stimulated translocation of GLUT4 to the plasma membrane, as measured in adhered plasma membrane lawns. Immunopurified VAMP-2-containing compartments from L6 myotubes and 3T3-L1 adipocytes showed significant levels of VAP-33. We propose that VAP-33 may be a regulator of VAMP-2 availability for GLUT4 traffic and other vesicle fusion events.  相似文献   

15.
Diabetes mellitus is a complex disease that is characterized by the defection of insulin sensitivity in such peripheral tissues as skeletal muscle, adipose tissue and liver. We have previously demonstrated that certain inositol derivatives stimulated glucose uptake accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane in L6 myotubes. We investigated in this present study whether an oral intake of D-pinitol (PI) and myo-inositol (MI) would affect GLUT4 translocation in the skeletal muscle of mice. PI or MI at 1 g/kg BW administered orally to mice 30 min before a post-oral injection of glucose at 2 g/kg BW resulted in both PI and MI increasing GLUT4 translocation in the skeletal muscle and lowering the plasma glucose and insulin levels. PI and MI, therefore, have the potential to prevent diabetes mellitus by reducing the postprandial blood glucose level and stimulating GLUT4 translocation in the skeletal muscle.  相似文献   

16.
Neuregulins regulate the expression of acetylcholine receptor genes and induce development of the neuromuscular junction in muscle. In studying whether neuregulins regulate glucose uptake in muscle, we analyzed the effect of a recombinant neuregulin, (r)heregulin-beta1-(177-244) (HRG), on L6E9 muscle cells, which express the neuregulin receptors ErbB2 and ErbB3. L6E9 responded acutely to HRG by a time- and concentration-dependent stimulation of 2-deoxyglucose uptake. HRG-induced stimulation of glucose transport was additive to the effect of insulin. The acute stimulation of the glucose transport induced by HRG was a consequence of the translocation of GLUT4, GLUT1, and GLUT3 glucose carriers to the cell surface. The effect of HRG on glucose transport was dependent on phosphatidylinositol 3-kinase activity. HRG also stimulated glucose transport in the incubated soleus muscle and was additive to the effect of insulin. Chronic exposure of L6E9 cells to HRG potentiated myogenic differentiation, and under these conditions, glucose transport was also stimulated. The activation of glucose transport after chronic HRG exposure was due to enhanced cell content of GLUT1 and GLUT3 and to increased abundance of these carriers at the plasma membrane. However, under these conditions, GLUT4 expression was markedly down-regulated. Muscle denervation is associated with GLUT1 induction and GLUT4 repression. In this connection, muscle denervation caused a marked increase in the content of ErbB2 and ErbB3 receptors, which occurred in the absence of alterations in neuregulin mRNA levels. This fact suggests that neuregulins regulate glucose transporter expression in denervated muscle. We conclude that neuregulins regulate glucose uptake in L6E9 muscle cells by mechanisms involving the recruitment of glucose transporters to the cell surface and modulation of their expression. Neuregulins may also participate in the adaptations in glucose transport that take place in the muscle fiber after denervation.  相似文献   

17.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

18.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

19.
Glucose transport in 3T3L1 adipocytes is mediated by two facilitated diffusion transport systems. We examined the effect of chronic glucose deprivation on transport activity and on the expression of the HepG2 (GLUT 1) and adipocyte/muscle (GLUT 4) glucose transporter gene products in this insulin-sensitive cell line. Glucose deprivation resulted in a maximal increase in 2-deoxyglucose uptake of 3.6-fold by 24 h. Transport activity declined thereafter but was still 2.4-fold greater than the control by 72 h. GLUT 1 mRNA and protein increased progressively during starvation to values respectively 2.4- and 7.0-fold greater than the control by 72 h. Much of the increase in total immunoreactive GLUT 1 protein observed later in starvation was the result of the accumulation of a non-functional or mistargeted 38 kDa polypeptide. Immunofluorescence microscopy indicated that increases in GLUT 1 protein occurred in presumptive plasma membrane (PM) and Golgi-like compartments during prolonged starvation. The steady-state level of GLUT 4 protein did not change during 72 h of glucose deprivation despite a greater than 10-fold decrease in the mRNA. Subcellular fractionation experiments indicated that the increased transport activity observed after 24 h of starvation was principally the result of an increase in the 45-50 kDa GLUT 1 transporter protein in the PM. The level of the GLUT 1 transporter in the PM and low-density microsomes (LDM) was increased by 3.9- and 1.4-fold respectively, and the GLUT 4 transporter content of the PM and LDM was 1.7- and 0.6-fold respectively greater than that of the control after 24 h of glucose deprivation. These data indicate that newly synthesized GLUT 1 transporters are selectively shuttled to the PM and that GLUT 4 transporters undergo translocation from an intracellular compartment to the PM during 24 h of glucose starvation. Thus glucose starvation results in an increase in glucose transport in 3T3L1 adipocytes via a complex series of events involving increased biosynthesis, decreased turnover and subcellular redistribution of transporter proteins.  相似文献   

20.
Muscle is the largest tissue in our body and plays an important role in glucose homeostasis and hence diabetes. In the present study, we examined the effects of taxifolin (TXF) on glucose metabolism in cultured L6 muscle cells (myotubes) and in type 2 diabetic (T2D) model KK-Ay/Ta mice. TXF dose-dependently increased glucose uptake (GU) in L6 myotubes under the condition of insulin absence. This increase in GU was partially, but significantly canceled by TXF treatment in combination with either LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), which phosphorylates protein kinase B (Akt) or Compound C, an inhibitor of 5’-adenosine monophosphate-activated protein kinase (AMPK). Furthermore, TXF was demonstrated to activate (=phosphorylate) both Akt and AMPK, and promote glucose transporter 4 (GLUT4) translocation to the plasma membrane from cytosol of L6 myotubes via both PI3K/Akt and AMPK signaling pathways. Based on these in vitro findings, we conducted an in vivo experiment in KK-Ay/Ta mice with hyperglycemia and hyperuricemia. Fasting plasma glucose, insulin, uric acid levels and an index of insulin resistance (HOMA-IR) increased significantly in the T2D model mice compared with normal ones. Such rises in the T2D state were significantly suppressed by oral administration of TXF for four weeks. These results suggest that TXF is a potent antihyperglycemic and antihyperuricemic phytochemical in the T2D state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号