共查询到20条相似文献,搜索用时 0 毫秒
1.
Yeasts have a justified reputation as one of the world's most versatile organisms. Baker's yeast continues to live up to this recognition by joining the war against malaria. Yeast can now be used to study antifolate drug resistance patterns that depend on the dihydrofolate reductase enzyme (DHFR) from the malaria parasite. 相似文献
2.
Avison MB 《Genome biology》2005,6(13):243
Recent work shows that the inhibition of the SOS stress response in Escherichia coli reduces the development of resistance to the antibiotics ciprofloxacin and rifampicin. This finding may help in the battle against the rise of resistance to antimicrobial drugs. 相似文献
3.
4.
Studies of molecular recognition using designed and synthesised molecules provide valuable information on the principle and possible applications of artificial functional molecules. Porphyrin-based receptors have been used to elucidate haem-protein interactions and the basic mechanism of multi-point recognition. 相似文献
5.
Cancer drug development is leading the way in exploiting molecular biological and genetic information to develop "personalized" medicine. The new paradigm is to develop agents that target the precise molecular pathology driving the progression of individual cancers. Drug developers have benefited from decades of academic cancer research and from investment in genomics, genetics and automation; their success is exemplified by high-profile drugs such as Herceptin (trastuzumab), Gleevec (imatinib), Tarceva (erlotinib) and Avastin (bevacizumab). However, only 5% of cancer drugs entering clinical trials reach marketing approval. Cancer remains a high unmet medical need, and many potential cancer targets remain undrugged. In this review we assess the status of the discovery and development of small-molecule cancer therapeutics. We show how chemical biology approaches offer techniques for interconnecting elements of the traditional linear progression from gene to drug, thereby providing a basis for increasing speed and success in cancer drug discovery. 相似文献
6.
We synthesized the glucuronides of MS-209 to identify the two main unknown metabolites in human urine. Reaction of MS-209 and glucuronyl trichloroacetimidate gave two beta-isomers, which were each glucuronate of (R)- and (S)-MS-209. These spectrum data were identical with the metabolites. 相似文献
7.
8.
The goal of oncolytic therapy is to exploit the innate ability of viruses to infect tumor cells, replicate in tumor cells, and produce selective oncolysis while sparing normal cells. Although the concept that viruses can be oncolytic is not new, it is only in the last three decades that efforts have been directed at genetically mutating viruses to specifically target characteristics of cancer cells. Several viruses have the potential to infect, replicate and lyse tumor cells, each taking advantage of different host cancer cell biology. This review will focus on the major viruses under current investigation for oncolytic therapy, the mechanism by which they specifically eradicate tumors, and the clinical strategies currently under investigation. 相似文献
9.
The completion of the human genome sequence and the development of new techniques, which allow the visualisation of comprehensive gene expression patterns, has led to the identification of a large number of gene products differentially expressed in tumours and corresponding normal tissues. The task at hand is the sorting of these genes into correlative and causative ones. Correlative genes are merely changed as a consequence of transformation and have no decisive effects upon transformation. In contrast, causative genes play a direct role in the process of cellular transformation and the maintenance of the transformed state, which can be exploited for therapeutic purposes. Oncogenes and tumour suppressor genes are prime targets for the development of new inhibitors and gene therapeutic strategies. However, many target oncogene products do not exhibit enzymatic activity that can be inhibited by conventional small molecular weight compounds. They exert their functions through regulated protein-protein or protein-DNA interactions and might require other compounds for efficient interference with such functions. Peptides are emerging as a novel class of drugs for cancer therapy, which could fulfil these tasks. Peptide therapy aims at the specific inhibition of inappropriately activated oncogenes. This review will focus on the selection procedures, which can be employed to identify useful peptides for the treatment of cancer. Before peptide-based therapeutics can become useful, it will be necessary to increase their stability by modifications or the use of scaffolds. Additionally, various delivery methods including liposomes and particularly the use of protein transduction domains (PTDs) have to be explored. These strategies will yield highly specific and more effective peptides and improve the potential of peptide-based anti-cancer therapeutics. 相似文献
10.
Image source (SEM of Mtb): NIAID. 相似文献
11.
Pyrimidine antagonists including 5-Fluorouracil (5-FU) have been used in chemotherapy for cancer patients for over 40 years. 5-FU, especially, is a mainstay treatment for colorectal cancer. It is a pro-drug that is converted to the active drug via the nucleic acid biosynthetic pathway. The metabolites of 5-FU inhibit normal RNA and DNA function, and induce apoptosis of cancer cells. One of the major obstacles to successful chemotherapy is the resistance of cancer cells to anti-cancer drugs. Therefore, it is important to elucidate resistance mechanisms to improve the efficacy of chemotherapy. We have used C. elegans as a model system to investigate the mechanism of resistance to 5-FU, which induces germ cell death and inhibits larval development in C. elegans. We screened 5-FU resistant mutants no longer arrested as larvae by 5-FU. We obtained 18 mutants out of 72,000 F1 individuals screened, and mapped them into three complementation groups. We propose that C. elegans could be a useful model system for studying mechanisms of resistance to anti-cancer drugs. 相似文献
12.
13.
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020–2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance. 相似文献
14.
Dysregulation of kinase-based signal transduction networks contributes to multiple aspects of malignancy. Chemical genetic approaches interrogate perturbed signaling in the immediate context of small molecule inhibitor treatment. In recent years, such approaches have identified new kinase targets, clarified the impact of poly-specific inhibition using agents for which at least one primary target is known, and have identified targets for which combinatorial inhibition leads to improved efficacy. Elucidation of the mechanisms through which specific small molecule drug-like agents impact crucial cancer pathways should yield important and clinically translatable insights into the use of similar agents in patients. 相似文献
15.
16.
Novel approaches to the analysis of polysaccharide structures. 总被引:2,自引:0,他引:2
D A Brant 《Current opinion in structural biology》1999,9(5):556-562
Recently, atomic force microscopy has been used to image a variety of polysaccharides and map their distribution on cell surfaces. The mechanical response of polysaccharides to tensile stress has been investigated in single-molecule force spectroscopy experiments. Small-angle X-ray scattering has provided a probe of polysaccharide structure operating in a size range (2-25 nm) that is intermediate between those accessible using nuclear magnetic resonance and light scattering. 相似文献
17.
Chemogenomic approaches to drug discovery 总被引:10,自引:0,他引:10
Caron PR Mullican MD Mashal RD Wilson KP Su MS Murcko MA 《Current opinion in chemical biology》2001,5(4):464-470
18.
19.
Suying Bao Xueya Zhou Liangcai Zhang Jie Zhou Kelvin Kai-Wang To Binbin Wang Liqiu Wang Xuegong Zhang You-Qiang Song 《BMC genomics》2013,14(1)
Background
The genetic make-up of humans and other mammals (such as mice) affects their resistance to influenza virus infection. Considering the complexity and moral issues associated with experiments on human subjects, we have only acquired partial knowledge regarding the underlying molecular mechanisms. Although influenza resistance in inbred mice has been mapped to several quantitative trait loci (QTLs), which have greatly narrowed down the search for host resistance genes, only few underlying genes have been identified.Results
To prioritize a list of promising candidates for future functional investigation, we applied network-based approaches to leverage the information of known resistance genes and the expression profiles contrasting susceptible and resistant mouse strains. The significance of top-ranked genes was supported by different lines of evidence from independent genetic associations, QTL studies, RNA interference (RNAi) screenings, and gene expression analysis. Further data mining on the prioritized genes revealed the functions of two pathways mediated by tumor necrosis factor (TNF): apoptosis and TNF receptor-2 signaling pathways. We suggested that the delicate balance between TNF’s pro-survival and apoptotic effects may affect hosts’ conditions after influenza virus infection.Conclusions
This study considerably cuts down the list of candidate genes responsible for host resistance to influenza and proposed novel pathways and mechanisms. Our study also demonstrated the efficacy of network-based methods in prioritizing genes for complex traits.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-816) contains supplementary material, which is available to authorized users. 相似文献20.
Considerable progress has been made in exploiting the enormous amount of genomic and genetic information for the identification of potential targets for drug discovery and development. New tools that incorporate pathway information have been developed for gene expression data mining to reflect differences in pathways in normal and disease states. In addition, forward and reverse genetics used in a high-throughput mode with full-length cDNA and RNAi libraries enable the direct identification of components of signaling pathways. The discovery of the regulatory function of microRNAs highlights the importance of continuing the investigation of the genome with sophisticated tools. Furthermore, epigenetic information including DNA methylation and histone modifications that mediate important biological processes add to the possibilities to identify novel drug targets and patient populations that will benefit from new therapies. 相似文献