首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging is associated with a progressive dysfunctioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We have studied the response of the HPA axis to stress and a hormonal (ovine corticotropin releasing factor (o-CRF) challenge in young (1.5-2 years) and aged (greater than 11 years) dogs. Compared to the young dogs, the aged animals displayed an increased basal concentration of both ACTH and cortisol. In addition, in response to an o-CRF challenge (1 microgram/kg i.v.) or an electric footshock (1 mA, alternatively on/off for 2 s) or immobilization (45 min) stress, the aged dogs showed significantly larger increments in ACTH and cortisol. Following the challenge test, the young and aged dogs reached their respective basal hormone levels at the same time, except for the o-CRF test. In the latter case, in contrast to the young controls, the aged dogs still showed an increased plasma cortisol level compared to the pre-challenge basal hormone concentration. Concerning the effect of aging on the brain and hypophyseal corticosteroid receptors, a selective decline (minus 50-75%) in mineralocorticoid receptor (MR) was observed in all measured brain regions (dorsal and ventral hippocampus, septum, hypothalamus) and anterior pituitary, whereas no change was found in brain glucocorticoid receptor (GR) number. The GR level in the anterior pituitary was even increased by 70%. In light of the role that MR and GR seem to play in the regulation of the HPA axis, it is concluded that the diminished MR number in the aged dog brain may underly the increased basal hormone levels and the elevated responsiveness of the HPA axis in these animals. The observation that the stress-induced elevations of cortisol and ACTH were not prolonged at senescence suggests that the GR-mediated negative feedback action of glucocorticoids is not altered, which is in line with the unchanged brain GR numbers in the aged dogs.  相似文献   

2.
Symptoms of irritable bowel syndrome (IBS) are exacerbated by stress. Previously, we demonstrated that the stress hormone corticosterone applied directly to the amygdala induced visceral hypersensitivity through the actions of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). However, the involvement of amygdaloid GR and MR in the regulation of visceral sensitivity following psychological stress is unknown; therefore, the goal of the present study was to determine the relative importance of amygdaloid GR and MR in the regulation of visceral sensitivity in a rodent model of behavioral stress. Male F-344 rats were stereotaxically implanted with micropellets bilaterally on the dorsal margin of the amygdala containing the GR antagonist mifepristone, the MR antagonist spironolactone, or cholesterol as a control. Animals were then exposed to 1 h of water-avoidance stress (WAS) or sham stress for 1 day (acute) or 7 days (repeated). Visceral sensitivity was assessed either 1 h or 24 h after the final session of WAS and quantified as the number of contractions of the external abdominal oblique, a visceromotor response, in response to colorectal distension at pressures of 0-60 mmHg. Acute stress induced transient visceral hyperalgesia, which was absent 24 h after WAS and independent of GR and MR. Conversely, repeated WAS induced sustained visceral hyperalgesia that was abolished by specifically targeting the amygdala with GR and MR antagonists. These results demonstrate that the amygdala corticosteroid system plays an essential role in mediating the effects of repeated WAS on visceral sensitivity. Furthermore, our findings suggest that amygdaloid GR and MR may be involved in IBS symptomatology.  相似文献   

3.
4.
5.
V Perreau  A Sarrieau  P Mormède 《Life sciences》1999,64(17):1501-1515
Corticosteroids receptors were characterized and compared in central and peripheral tissues of two pig breeds, the Meishan (MS) and the Large White (LW) pigs, that display differences in the basal activity and stress-induced reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. In vitro kinetic experiments on kidney and liver cytosols from adrenalectomized pigs allowed to identify two distinct corticosteroid receptors referred to as mineralocorticoid (MR) and glucocorticoid (GR) receptors. The binding specificities were determined for kidney and hippocampal MR and for liver and hippocampal GR. In hippocampus and peripheral tissues, cortisol showed a greater affinity for MR than for GR. As already described in the dog, mouse and human, dexamethasone and progesterone display a moderate affinity for MR. Putative differences in corticosteroid receptors binding capacities and affinities were investigated by saturation binding studies in specific regions implicated in the regulation of HPA axis (hippocampus and pituitary). The MS pigs evidenced higher densities of hippocampal MR, while LW pigs had higher densities of pituitary GR. Thus, this study suggests that a difference in the MR/GR balance in hippocampus and pituitary could be implicated in the different HPA activity between MS and LW pigs.  相似文献   

6.
Relapse, even following an extended period of withdrawal, is a major challenge in substance abuse management. Delayed neurobiological effects of the drug during prolonged withdrawal likely contribute to sustained vulnerability to relapse. Stress is a major trigger of relapse, and the hippocampus regulates the magnitude and duration of stress responses. Recent work has implicated hippocampal plasticity in various aspects of substance abuse. We asked whether changes in stress regulatory mechanisms in the hippocampus may participate in the neuroadaptations that occur during prolonged withdrawal. We therefore examined changes in the rat stress system during the course of withdrawal from extended daily access (5-hours) of cocaine self-administration, an animal model of addiction. Tissue was collected at 1, 14 and 28 days of withdrawal. Plasma corticosterone levels were determined and corticosteroid receptors (GR, MR, MR/GR mRNA ratios) and expression of other stress-related molecules (HSP90AA1 and HSP90AB1 mRNA) were measured in hippocampal subfields using in situ hybridization. Results showed a delayed emergence of dysregulation of stress genes in the posterior hippocampus following 28 days of cocaine withdrawal. This included increased GR mRNA in DG and CA3, increased MR and HSP90AA1 mRNA in DG, and decreased MR/GR mRNA ratio in DG and CA1. Corticosterone levels progressively decreased during the course of withdrawal, were normalized following 28 days of withdrawal, and were correlated negatively with GR and positively with MR/GR mRNA ratio in DG. These results suggest a role for the posterior hippocampus in the neuroadaptations that occur during prolonged withdrawal, and point to a signaling partner of GR, HSP90AA1, as a novel dysregulated target during cocaine withdrawal. These delayed neurobiological effects of extended cocaine exposure likely contribute to sustained vulnerability to relapse.  相似文献   

7.
Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic-pituitary-adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species--the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived). During adulthood, offspring of both groups were subjected to two stressors (restraint and isolation), and corticosterone concentrations were measured. Additionally, we measured baseline levels of the two corticosteroid receptors--glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)--in the hippocampus, hypothalamus and cerebellum. Our results suggest that maternally deprived offspring are hyper-responsive to isolation in comparison with controls. Furthermore, mRNA levels of both GR and MR receptors are altered in maternally deprived offspring in comparison with controls. Thus, absence of maternal care has lasting consequences for HPA function in a biparental species where paternal care is available.  相似文献   

8.
9.
The potential role of excitatory amino acids in the regulation of brain corticosteroid receptors was examined using systemic administration of kainic acid. Administration of kainic acid (5, 10, and 15 mg/kg) to 24-h adrenalectomized rats that were killed 3 h later produced large, dose-related decreases in glucocorticoid receptors (GR) in hippocampus (23-63%), frontal cortex (22-76%), and striatum (41-49%). Kainic acid did not decrease hypothalamic GR. Hippocampal mineralocorticoid receptors (MR) were also markedly decreased (50-71%) by kainic acid. Significant decreases in corticosteroid receptors could be detected as soon as 1 h after kainic acid (10 mg/kg) administration. Decreases in hippocampal, cortical, and hypothalamic GR as well as hippocampal MR were observed 24 h after administration of kainic acid (10 mg/kg) to adrenalectomized rats. Kainic acid (10 mg/kg) also significantly decreased hippocampal GR and MR as well as GR in the other three brain regions when administered to adrenal-intact rats that were subsequently adrenalectomized and killed 48 h after drug administration. The kainic acid-induced decreases in hippocampal GR and MR binding were due to decreases in the maximum number of binding sites (Bmax) with no change in the apparent affinity (KD). Kainic acid when added in vitro did not displace the GR and MR radioligands from their respective receptors. These studies demonstrate that excitatory amino acids play a prominent role in the regulation of hippocampal corticosteroid receptors. In addition, the data indicate that noncorticosterone factors are involved in corticosteroid receptor plasticity.  相似文献   

10.
11.
Corticosteroids and the brain   总被引:5,自引:0,他引:5  
Mineralocorticoid (MR) and glucocorticoid receptors (GR) are expressed in the central nervous system. Radioligand binding studies, autoradiography, immunocytochemistry and in situ hybridization have shown that MR and GR are found in abundance in neurons of the limbic system (hippocampus), a structure involved in mood, affect and subtle control of the hypothalamic-pituitary-adrenal (HPA) axis. In the hippocampus MR binds corticosterone (CORT) as well as aldosterone (ALDO) with high affinity. MR seems mainly occupied by CORT in the face of its 2-3 order higher circulating concentration. GR binds CORT with a 6-10-fold lower affinity. MR and GR gene expression, as well as the native receptor proteins, seem to be controlled in a coordinative manner. When GR is down-regulated by excess homologous steroid, MR appears to be increased. Down regulation of MR reduces GR as well. MR and GR display a differential ontogenetic pattern. Ontogeny, particularly that of GR, can be permanently influenced when animals are exposed during the first post-natal week of maternal deprivation, handling, CORT or ACTH1-24 injections. These MR and GR changes persist into senescence and have been proposed to result in altered CORT responsiveness, stress regulation, behavioural adaptation and brain aging.  相似文献   

12.
The effects of corticosteroids in the brain are mediated through the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). We used a sensitive competitive RT-PCR assay to quantify the amounts of GR and MR mRNA in human brain tissue specimens from patients with focal epilepsies. GR and MR mRNAs were expressed at approximately the same levels in the temporal lobe, frontal lobe, and hippocampus as compared to tissues with high glucocorticoid/mineralocorticoid receptor expression (liver/kidney). GR and MR mRNA concentrations in the temporal lobe increased markedly during childhood and reached adult levels at puberty. GR and MR mRNA expression was significantly higher in the temporal lobe and frontal lobe cortex of women than in those of men. In women, MR and GR mRNA concentrations were markedly lower in hippocampal tissue than in frontal and temporal lobe cortex tissue. In conclusion, our data demonstrate sex- and site-dependent expression of corticosteroid receptor mRNA in the human brain.  相似文献   

13.
14.
When vertebrates face acute stressors, their bodies rapidly undergo a repertoire of physiological and behavioral adaptations, which is termed the stress response. Rapid changes in heart rate and blood glucose levels occur via the interaction of glucocorticoids and their cognate receptors following hypothalamic‐pituitary‐adrenal axis activation. These physiological changes are observed within minutes of encountering a stressor and the rapid time domain rules out genomic responses that require gene expression changes. Although behavioral changes corresponding to physiological changes are commonly observed, it is not clearly understood to what extent hypothalamic‐pituitary‐adrenal axis activation dictates adaptive behavior. We hypothesized that rapid locomotor response to acute stressors in zebrafish requires hypothalamic‐pituitary‐interrenal (HPI) axis activation. In teleost fish, interrenal cells are functionally homologous to the adrenocortical layer. We derived eight frameshift mutants in genes involved in HPI axis function: two mutants in exon 2 of mc2r (adrenocorticotropic hormone receptor), five in exon 2 or 5 of nr3c1 (glucocorticoid receptor [GR]) and two in exon 2 of nr3c2 (mineralocorticoid receptor [MR]). Exposing larval zebrafish to mild environmental stressors, acute changes in salinity or light illumination, results in a rapid locomotor response. We show that this locomotor response requires a functioning HPI axis via the action of mc2r and the canonical GR encoded by nr3c1 gene, but not MR (nr3c2). Our rapid behavioral assay paradigm based on HPI axis biology can be used to screen for genetic and environmental modifiers of the hypothalamic‐pituitary‐adrenal axis and to investigate the effects of corticosteroids and their cognate receptor interactions on behavior.  相似文献   

15.
Male wild house mice, selected for short (SAL) and long (LAL) attack latency, show distinctly different behavioral strategies in coping with environmental challenges. In this study, we tested the hypothesis that this difference in coping style is associated with a differential stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) system. SAL rather than LAL mice showed a clear fluctuation in circulating corticosterone concentrations around the circadian peak with significantly higher levels in the late light phase. LAL mice showed lower basal ACTH levels and higher thymic and spleen weights compared to SAL. Under basal conditions, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA in the hippocampus and corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus were not different between the two lines. Forced swimming for 5 min induced high immobility behavior in LAL mice which was associated with an enhanced and prolonged corticosterone response as compared to SAL, while absolute ACTH levels did not differ. In addition, LAL mice showed an increase in hippocampal MR mRNA (but not GR) and hypothalamic CRH mRNA at 24 h after forced swimming. In conclusion, a genetic trait in coping style of wild house mice is associated with an idiosyncratic pattern of HPA activity, and greater responsiveness of physiological and molecular stress markers in LAL mice. In view of the profound differences in behavioral traits and stress system reactivity, these mouse lines genetically selected for attack latency present an interesting model for studying the mechanism underlying individual variation in susceptibility to stress-related psychopathology.  相似文献   

16.
The hippocampus receives major noradrenergic and serotoninergic (5-HT) innervations which interact with corticosteroid-sensitive cells. However, the subregional localization of these actions and the corticosteroid receptor types involved have not been defined and current ligand binding techniques for estimating corticosteroid receptors are hampered by several methodological limitations. We have developed in situ hybridization histochemical techniques to allow specific and sensitive estimation of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNA expression in rat hippocampus. Investigation of the effects of 5,7-dihydroxytryptamine lesions of 5-HT neurons showed significantly reduced GR and MR mRNA expression in some hippocampal subregions. Both abnormal 5-HT neurotransmission and excessive corticosteroid secretion are associated with major affective disorders, particularly depression. The crucial interaction between these two systems may occur, at least in part, at the level of regulation of hippocampal corticosteroid receptor expression.  相似文献   

17.
18.
19.
Corticosteroids are important factors in the maintenance of homeostasis in the brain. They are regulated via the interaction with two corticosteroid receptor systems—the mineralocorticoid (MR) and glucocorticoid receptor (GR). In the present study, we observed age-related changes in serum cortisol levels, and immunoreactivities and protein levels of MR and GR in the hippocampal CA1 region and dentate gyrus. The serum cortisol levels were significantly high (about twofold) in the aged group compared to that in the adult group. In the adult dog (2–3 years old), MR and GR immunoreactivity was detected in neurons in the pyramidal layer of the CA1 region, and in the granular and multiform layers of the dentate gyrus. In the aged dog (10–12 years old), MR immunoreactivity in the CA1 region was significantly decreased, especially, in the dentate multiform layer. In contrast, GR immunoreactivity in the aged dog was slightly decreased in the CA1 region and dentate gyrus. In the Western blot analysis, MR protein level in the aged dog was significantly lower compared to that of the adult dog; GR protein level in the aged dog was not significantly decreased. This result indicates that the reduction of MR immunoreactivity and protein level in the hippocampus of the aged dog may be associated with neural dysfunction in the aged hippocampus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号