首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Δwere consistently short or absent throughout the cell cycle. In contrast, in kip3Δ strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Δ cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Δ kar9Δ double mutants were synthetically lethal, whereas kip3Δ kar9Δ double mutants were viable. Conversely, kip3Δ dhc1Δ double mutants were synthetically lethal, whereas kip2Δ dhc1Δ double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   

3.
The Saccharomyces cerevisiae kinesin-related motor Kar3p, though known to be required for karyogamy, plays a poorly defined, nonessential role during vegetative growth. We have found evidence suggesting that Kar3p functions to limit the number and length of cytoplasmic microtubules in a cell cycle–specific manner. Deletion of KAR3 leads to a dramatic increase in cytoplasmic microtubules, a phenotype which is most pronounced from START through the onset of anaphase but less so during late anaphase in synchronized cultures. We have immunolocalized HA-tagged Kar3p to the spindle pole body region, and fittingly, Kar3p was not detected by late anaphase. A microtubule depolymerizing activity may be the major vegetative role for Kar3p. Addition of the microtubule polymerization inhibitors nocodazol or benomyl to the medium or deletion of the nonessential α-tubulin TUB3 gene can mostly correct the abnormal microtubule arrays and other growth defects of kar3 mutants, suggesting that these phenotypes result from excessive microtubule polymerization. Microtubule depolymerization may also be the mechanism by which Kar3p acts in opposition to the anaphase B motors Cin8p and Kip1p. A preanaphase spindle collapse phenotype of cin8 kip1 mutants, previously shown to involve Kar3p, is markedly delayed when microtubule depolymerization is inhibited by the tub2-150 mutation. These results suggest that the Kar3p motor may act to regulate the length and number of microtubules in the preanaphase spindle.  相似文献   

4.
In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6Δ bni1Δ mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.  相似文献   

5.
In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified: BIM1, STU2, and KAR9 itself. STU2 encodes a component of the spindle pole body. Bim1p is the yeast homologue of the human microtubule-binding protein EB1, which is a binding partner to the adenomatous polyposis coli protein involved in colon cancer. Eighty-nine amino acids within the third quarter of Bim1p was sufficient to confer interaction with Kar9p. The two-hybrid interactions were confirmed with the use of coimmunoprecipitation experiments. Genetic analysis placed Bim1p in the Kar9p pathway for nuclear migration. Bim1p was not required for Kar9p's cortical or spindle pole body localization. However, deletion of BIM1 eliminated Kar9p localization along cytoplasmic microtubules. Furthermore, in the bim1 mutants, the cytoplasmic microtubules no longer intersected the cortical dot of Green Fluorescent Protein-Kar9p. These experiments demonstrate that the interaction of cytoplasmic microtubules with the Kar9p cortical attachment site requires the microtubule-binding protein Bim1p.  相似文献   

6.
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the shmoo tip. We find that Kar3p, a minus end-directed kinesin motor protein, is required, whereas the other cytoplasmic motors, dynein and the kinesins Kip2p and Kip3p, are not. In the absence of Kar3p, attached microtubule plus ends released from the shmoo tip when they switched to depolymerization. Furthermore, microtubules in cells expressing kar3-1, a mutant that results in rigor binding to microtubules [2], were stabilized specifically at shmoo tips. Imaging of Kar3p-GFP during mating revealed that fluorescence at the shmoo tip increased during periods of microtubule depolymerization. These data are the first to localize the activity of a minus end-directed kinesin at the plus ends of microtubules. We propose a model in which Kar3p couples depolymerizing microtubule plus ends to the cell cortex and the Bim1p-Kar9p protein complex maintains attachment during microtubule polymerization. In support of this model, analysis of Bim1p-GFP at the shmoo tip results in a localization pattern complementary to that of Kar3p-GFP.  相似文献   

7.
The white-rot fungus Schizophyllum commune (Agaricomycetes) was used to study the cell biology of microtubular trafficking during mating interactions, when the two partners exchange nuclei, which are transported along microtubule tracks. For this transport activity, the motor protein dynein is required. In S. commune, the dynein heavy chain is encoded in two parts by two separate genes, dhc1 and dhc2. The N-terminal protein Dhc1 supplies the dimerization domain, while Dhc2 encodes the motor machinery and the microtubule binding domain. This split motor protein is unique to Basidiomycota, where three different sequence patterns suggest independent split events during evolution. To investigate the function of the dynein heavy chain, the gene dhc1 and the motor domain in dhc2 were deleted. Both resulting mutants were viable, but revealed phenotypes in hyphal growth morphology and mating behavior as well as in sexual development. Viability of strain Δdhc2 is due to the higher expression of kinesin-2 and kinesin-14, which was proven via RNA sequencing.  相似文献   

8.
Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to spindle positioning in the absence of dynein. The elimination of Kip3p function in dyn1Δ cells severely compromised spindle movement to the mother–bud neck. In dyn1Δ cells that had completed positioning, elimination of Kip3p function caused spindles to mislocalize to distal positions in mother cell bodies. We also demonstrate that the spindle-positioning defects exhibited by dyn1 kip3 cells are caused, to a large extent, by the actions of kinesin- related Kip2p. Microtubules in kip2Δ cells were shorter and more sensitive to benomyl than wild-type, in contrast to the longer and benomyl-resistant microtubules found in dyn1Δ and kip3Δ cells. Most significantly, the deletion of KIP2 greatly suppressed the spindle localization defect and slow growth exhibited by dyn1 kip3 cells. Likewise, induced expression of KIP2 caused spindles to mislocalize in cells deficient for dynein and Kip3p. Our findings indicate that Kip2p participates in normal spindle positioning but antagonizes a positioning mechanism acting in dyn1 kip3 cells. The observation that deletion of KIP2 could also suppress the inviability of dyn1Δ kar3Δ cells suggests that kinesin-related Kar3p also contributes to spindle positioning.  相似文献   

9.
Accurate positioning of the mitotic spindle in Saccharomyces cerevisiae is coordinated with the asymmetry of the two poles and requires the microtubule-to-actin linker Kar9p. The asymmetric localization of Kar9p to one spindle pole body (SPB) and microtubule (MT) plus ends requires Cdc28p. Here, we show that the CLIP-170 homologue Bik1p binds directly to Kar9p. In the absence of Bik1p, Kar9p localization is not restricted to the daughter-bound SPB, but it is instead found on both SPBs. Kar9p is hypophosphorylated in bik1delta mutants, and Bik1p binds to both phosphorylated and unphosphorylated isoforms of Kar9p. Furthermore, the two-hybrid interaction between full-length KAR9 and the cyclin CLB5 requires BIK1. The binding site of Clb5p on Kar9p maps to a short region within the basic domain of Kar9p that contains a conserved phosphorylation site, serine 496. Consistent with this, Kar9p is found on both SPBs in clb5delta mutants at a frequency comparable with that seen in kar9-S496A strains. Together, these data suggest that Bik1p promotes the phosphorylation of Kar9p on serine 496, which affects its asymmetric localization to one SPB and associated cytoplasmic MTs. These findings provide further insight into a mechanism for directing centrosomal inheritance.  相似文献   

10.
Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the dynein pathway, astral microtubules off-load dynein onto the cortical anchor protein Num1, which is followed by dynein pulling on the spindle. Yet, the mechanism by which microtubules target cortical anchor sites is unknown. Here we quantify the pivoting motion of astral microtubules around the spindle pole bodies, which occurs during spindle translocation towards the neck and through the neck. We show that this pivoting is largely driven by the Kar9 pathway. The microtubules emanating from the daughter-bound spindle pole body pivot faster than those at the mother-bound spindle pole body. The Kar9 pathway reduces the time needed for an astral microtubule inside the daughter cell to start pulling on the spindle. Thus, we propose a new role for microtubule pivoting: By pivoting around the spindle pole body, microtubules explore the space laterally, which helps them search for cortical anchor sites in the context of spindle positioning in budding yeast.  相似文献   

11.
As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating.  相似文献   

12.
BACKGROUND: Two genetic 'pathways' contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement into the bud. Loss of either pathway results in nuclear-migration defects; loss of both is lethal. Here, to visualize the functional steps leading to correct spindle orientation along the mother-bud axis, we imaged live yeast cells expressing Kar9p and dynein as green fluorescent protein fusions. RESULTS: Transport of Kar9p into the bud was found to require the myosin Myo2p. Kar9p interacted with microtubules through the microtubule-binding protein Bim1p and facilitated microtubule penetration into the bud. Once microtubules entered the bud, Kar9p provided a platform for microtubule capture at the bud cortex. Kar9p was also observed at sites of microtubule shortening in the bud, suggesting that Kar9p couples microtubule shortening to nuclear migration. CONCLUSIONS: Thus, Kar9p provides a key link between the actin cytoskeleton and microtubules early in the cell cycle. A cooperative mechanism between Kar9p and Myo2p facilitates the pre-anaphase orientation of the spindle. Later, Kar9p couples microtubule disassembly with nuclear migration.  相似文献   

13.
Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle–specific microtubule-binding protein that promotes microtubule dynamicity.  相似文献   

14.
The Yeast Motor Protein, Kar3p, Is Essential for Meiosis I   总被引:2,自引:0,他引:2       下载免费PDF全文
The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.  相似文献   

15.
Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 μm−1 s−1 through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s−1. The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s−1 is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s−1 completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions.  相似文献   

16.
Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.  相似文献   

17.
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1’s function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31–Cdc31 interactions between Sfi1–Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation.  相似文献   

18.
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.  相似文献   

19.
During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.  相似文献   

20.
During cell division all chromosomes must be segregated accurately to each daughter cell. Errors in this process give rise to aneuploidy, which leads to birth defects and is implicated in cancer progression. The spindle checkpoint is a surveillance mechanism that ensures high fidelity of chromosome segregation by inhibiting anaphase until all kinetochores have established bipolar attachments to spindle microtubules. Bub1 kinase is a core component of the spindle checkpoint, and cells lacking Bub1 fail to arrest in response to microtubule drugs and precociously segregate their DNA. The mitotic role(s) of Bub1 kinase activity remain elusive, and it is controversial whether this C-terminal domain of Bub1p is required for spindle checkpoint arrest. Here we make a detailed analysis of budding yeast cells lacking the kinase domain (bub1ΔK). We show that despite being able to arrest in response to microtubule depolymerisation and kinetochore-microtubule attachment defects, bub1ΔK cells are sensitive to microtubule drugs. This is because bub1ΔK cells display significant chromosome mis-segregation upon release from nocodazole arrest. bub1ΔK cells mislocalise Sgo1p, and we demonstrate that both the Bub1 kinase domain and Sgo1p are required for accurate chromosome biorientation after nocodazole treatment. We propose that Bub1 kinase and Sgo1p act together to ensure efficient biorientation of sister chromatids during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号