首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.  相似文献   

2.
Unlike in the adult brain, the newborn brain specifically takes up serum albumin during the postnatal period, coinciding with the stage of maximal brain development. Here we shall summarize our knowledge about the role played by albumin in brain development. The role of this protein in brain development is intimately related to its ability to carry fatty acids. Thus, albumin stimulates oleic acid synthesis by astrocytes from the main metabolic substrates available during brain development. Astrocytes internalize albumin in vesicle-like structures by receptor-mediated endocytosis, which is followed by transcytosis, including passage through the endoplasmic reticulum (ER). The presence of albumin in the ER activates the sterol regulatory element-binding protein-1 (SREBP-1) and increases stearoyl-CoA 9-desaturase (SCD) mRNA, the key enzyme in oleic acid synthesis. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. In addition, oleic acid promotes axonal growth, neuronal clustering, and the expression of the axonal growth associated protein, GAP-43. All of these observations indicate neuronal differentiation. The effect of oleic acid on GAP-43 synthesis is brought about by the activation of protein kinase C. The expression of GAP-43 is significantly increased by the presence of albumin in neurons co-cultured with astrocytes, indicating that neuronal differentiation takes place by the presence of oleic acid synthesized and released by astrocytes in situ. In conclusion, during brain development the presence of albumin could play an important role by triggering the synthesis and release of oleic acid by astrocytes, thereby inducing neuronal differentiation.  相似文献   

3.
Glycerolphosphate acyltransferase activity in microsomes from rat adipose tissue is shown to decrease with time upon incubation with adipose tissue cytosolic fraction. The inactivation can be prevented with serum albumin and seems to be caused by an increase in endogenous free fatty acid as a consequence of the action of cytosolic lipase(s) on the membrane lipids. Similar inactivation can be observed after short incubation of microsomes with oleic acid at micromolar concentrations. Diacylglycerol acyltransferase is also inhibited by oleic acid, although to a lesser degree. In contrast, glucose-6-phosphatase and NADPH-cytochrome reductase activities are not changed. The oleic acid effect appears to occur upon binding to the microsomal membranes and can be prevented by bovine serum albumin at protein/fatty acid molar ratios above one. These results suggest that free fatty acids may be involved in the modulation of triacylglycerol synthetic enzymes.  相似文献   

4.
5.
S Y Mao  A H Maki 《Biochemistry》1987,26(12):3576-3582
The binding of free fatty acid to bovine serum albumin (BSA) and human serum albumin (HSA) was studied by phosphorescence and optical detection of triplet-state magnetic resonance spectroscopy in zero applied magnetic field. We have found that oleic acid perturbs the excited triplet state of Trp-134 but not that of Trp-212 in BSA. The assignment is made by comparing the BSA results with those obtained from oleic acid binding to HSA. The phosphorescence 0,0 band as well as the zero-field splittings of Trp-134 undergoes significant changes upon binding of oleic acid to BSA. Shifts of the 0,0-band wavelength and of the zero-field splittings point to large changes in the Trp-134 local environment which accompany the complex formation. The shifts are progressive until 3-4 mol of oleic acid is added. The spectroscopic changes may be attributed to Stark effects caused by a protein conformational change near Trp-134 in the BSA-oleate complex. Oleic acid binding has a minimal effect on the triplet-state properties of the single Trp-214 of HSA. The binding specificity with regard to chain length and unsaturation is reflected by the differences in the Trp environment when BSA forms complexes with various fatty acids.  相似文献   

6.
7.
The synthesis and release of the neurotrophic factor oleic acid requires internalization of albumin into the astrocyte, which is mediated by megalin. In this study, we show that the binding and internalization of albumin involve its interaction with megalin, caveolin-1, caveolin-2 and cavin, but not with clathrin in astrocytes from primary culture. Electron microscopy analyses revealed albumin-gold complexes localized in caveolae, but not in clathrin-coated vesicles. Neither chlorpromazine nor silencing clathrin expression modified albumin uptake. Silencing caveolin-1 strongly reduced the binding and internalization of albumin and the distribution of megalin in the plasma membrane. However, silencing caveolin-2 only decreased albumin internalization, suggesting that caveolin-1 is responsible for megalin recruitment to the caveolae and that caveolin-2 participates in caveolae internalization. In most tissues, the cytosolic adaptor protein disabled (Dab)-2 connects megalin to clathrin, astrocytes lack Dab-2; instead, they express Dab-1, which interacts with caveolin-1 and megalin and is required for albumin internalization. The transcytosis of albumin in astrocytes, including the passage through the endoplasmic reticulum, which is a compulsory step for oleic acid synthesis, was confirmed by electron microscopy analyses. Thus, whereas silencing clathrin did not modify the synthesis and release of oleic acid, the knock-down of caveolin-1, caveolin-2 and Dab-1 strongly reduced the synthesis and release of this neurotrophic factor. In conclusion, caveola-mediated endocytosis of albumin requires megalin and the adaptor protein Dab-1 in cultured astrocytes. Albumin endocytosis may be a key step in brain development because it stimulates the synthesis of oleic acid, which in turn promotes neuronal differentiation.  相似文献   

8.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

9.
Activation and inhibition of Ca2+-ATPase of calmodulin-depleted human erythrocyte membranes by oleic acid and a variety of other fatty acids have been measured. Low concentrations of oleic acid stimulate the enzyme activity, both in the presence and in the absence of calmodulin. Concomitantly, the affinity of the membrane bound enzyme to calmodulin progressively decreases due to competitive interactions of calmodulin and oleic acid with the enzyme. Removal of oleic acid from the membrane by serum albumin extinguishes the activating effect of oleic acid and restores the ability of the enzyme to bind calmodulin with high affinity. High concentrations of oleic acid induce an almost complete and irreversible loss of enzyme activity which cannot be abolished by removal of oleic acid. Despite a complete loss of enzyme activity, binding of calmodulin to membranes is approximately normal after removal of oleic acid. Activities of (Na+ + K+)-ATPase, Mg2+-ATPase and acetylcholine esterase, as well as the total protein content, show no gross changes upon treatment of membranes with increasing amounts of oleic acid, which seems to exclude that membrane solubilisation by oleic acid causes an inactivation of the enzyme.  相似文献   

10.
To clarify divergent views concerning the mechanism of fatty acid translocation across biomembranes this issue was now investigated in human erythrocytes. Translocation rates of exogenously inserted radioactive oleic acid across the membrane of native cells were derived from the time-dependent increase of the fraction of radioactivity becoming non-extractable by albumin. No accumulation of non-extractable unesterified oleic acid occurred. The rate of transfer was markedly suppressed by SH-reagents and by ATP-depletion. The suppression, however, resulted from a mere decrease of incorporation of oleic acid into phospholipids and was not accompanied by an increase of non-extractable unesterified oleic acid. These findings were reconcilable with the concept of a slow, possibly carrier-mediated fatty acid transfer as well as a very fast presumably, diffusional process not resolvable by the albumin extraction procedure. This ambiguity was resolved by using resealed ghosts, which are unable to incorporate oleic acid into phospholipids. In such ghosts all of the oleic acid inserted into the membrane remains extractable by albumin even after prolonged incubation. On the other hand, ghosts containing albumin accumulated non-extractable oleic acid. The rate of accumulation was beyond the time resolution of the albumin extraction procedure at 4 degrees C. Oleic acid uptake into albumin-containing ghosts became kinetically resolvable when the fatty acid was added as a complex with albumin. Correspondingly, time-resolvable release of oleic acid, originally complexed to internal albumin, into an albumin-containing medium was demonstrated at 4 degrees C. Rate and extent of these redistributions of oleic acid were dependent on the concentrations of internal and external albumin. This indicates limitation by the dissociation of oleic acid from albumin and not its translocation across the membrane. Translocation of oleic acid, which is probably a simple diffusive flip-flop process, must therefore occur with a half-time of less than 15 s. These findings raise doubts on the physiological role of presently discussed concepts of a carrier-mediated translocation of fatty acids across plasma membranes.  相似文献   

11.
1. Oleic acid at low concentrations (0--70 nmol/mg protein) stimulated mitochondrial state 4 respiration 4-fold, increased the apparent enthalpy change of the respiration per gram atom of oxygen consumed from -112 to -208 kJ/O and completely inhibited ATP synthesis without significant effect on the Mg-ATPase activity of mitochondria. 2. Similar effects on mitochondrial respiratory activities were observed with other fatty acids. 3. Bovine serum albumin (BSA) protected mitochondria from the effects of oleic acid irrespective of the order of addition of oleic acid and BSA to mitochondria. The capacity of BSA to bind oleic acid was calculated to be 3.6--7.1 (mean, 4.9) mol of oleic acid/mol of BSA. 4. The response time of mitochondrial respiration to added oleic acid or BSA was 20--25 s.  相似文献   

12.
13.
Unlike in the adult brain, the newborn brain specifically takes up serum albumin during the postnatal period, coinciding with the stage of maximal brain development. Here we report that albumin stimulates oleic acid synthesis by astrocytes from the main metabolic substrates available during brain development. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. Oleic acid promotes axonal growth, neuronal clustering, and expression of the axonal growth-associated protein-43, GAP-43; all these observations indicating neuronal differentiation. The effect of oleic acid on GAP-43 synthesis is brought about by the activation of protein kinase C, since it was prevented by inhibitors of this kinase, such as H-7, polymyxin or sphingosine. The expression of GAP-43 was significantly increased in neurons co-cultured with astrocytes by the presence of albumin indicating that neuronal differentiation takes place in the presence of oleic acid synthesized and released by astrocytes in situ. In conclusion, during brain development the presence of albumin could play an important role by triggering the synthesis and release of oleic acid by astrocytes, which induces neuronal differentiation.  相似文献   

14.
It is known that albumin can break the ester bonds in organophosphorus compounds (OPs). Amino acids responsible for esterase and pseudoesterase activity of albumin towards OPs are still not determined. It is assumed that Sudlow’s site I with residue Tyr150 exhibits the “true” esterase activity; and Sudlow’s site II containing residue Tyr411, a pseudoesterase one. Binding of fatty acids to albumin affects the efficiency of its interaction with xenobiotics; however, the effect of fatty acids on the interaction of albumin with OPs was not studied. The purpose of this work was to study the interaction of OPs with potential sites of albumin enzymatic activity and to examine the effect of fatty acids on the efficiency of such interaction using the molecular modeling methods by the example of paraoxon, a known inhibitor of acetylcholinesterase, and oleic acid. The structures of the protein complexes with paraoxon and oleic acid were determined by the molecular docking procedure; the conformational changes were calculated by the molecular dynamics method. It has been shown that sorption of oleic acid in one of the fatty acid-binding sites leads to the conformational changes in Sudlow’s sites I and II due to a “reversal” of the side chains of Arg410 and Arg257 residues by 90°. It has been found that this change in geometry reduces the affinity of Sudlow’s site I and increases the Sudlow’s site II affinity to paraoxon. The amino acid residue Ser193, which was previously identified as a site of possible albumin esterase activity, is not able to bind paraoxon efficiently. It is assumed that its activity can be affected by the interaction of the oleic acid molecules with other fatty acid-binding sites. It is hypothesized that the lesser toxicity of paraoxon compared to soman may be associated not only with its lower inhibitory activity against cholinesterases, but also with the increased affinity of paraoxon to albumin. It was concluded that albumin may serve as an alternative means of OP detoxification.  相似文献   

15.
Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.  相似文献   

16.
D Mailman  C Rose 《Life sciences》1990,47(19):1737-1744
The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon, Teflon, and polyethylene, and Pyrex, and borosilicate glass, and steel was measured. 3H-oleic acid and 14C-cholic acid were used in the presence of different concentrations of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts (10-95%) of oleic acid (25 microM) were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers of albumin - stimulated fatty acid uptake by hepatocytes may need to be reexamined.  相似文献   

17.
Our studies were conducted to explore the role of hepatic fatty acid-binding protein (L-FABP) in fatty acid transport to the nucleus. Purified rat L-FABP facilitated the specific interaction of [(3)H]oleic acid with the nuclei. L-FABP complexed with unlabeled oleic acid decreased the nuclear association of [(3)H]oleic acid:L-FABP; however, oleic acid-saturated bovine serum albumin (BSA) or fatty acid-free L-FABP did not. The peroxisome-proliferating agents LY171883, bezafibrate, and WY-14,643 were also effective competitors when complexed to L-FABP. Nuclease treatment did not affect the nuclear association of [(3)H]oleic acid:L-FABP; however, proteinase treatment of the nuclei abolished the binding. Nuclei incubated with fluorescein-conjugated L-FABP in the presence of oleic acid were highly fluorescent whereas no fluorescence was observed in reactions lacking oleic acid, suggesting that L-FABP itself was binding to the nuclei. The nuclear binding of FABP was concentration dependent, saturable, and competitive. LY189585, a ligand for L-FABP, also facilitated the nuclear binding of fluorescein-conjugated L-FABP, although it was less potent than oleic acid. A structural analog that does not bind L-FABP, LY163443, was relatively inactive in stimulating the nuclear binding. Potential interactions between L-FABP and nuclear proteins were analyzed by Far-Western blotting and identified a 33-kDa protein in the 500 mm NaCl extract of rat hepatocyte nuclei that bound strongly to biotinylated L-FABP. Oleic acid enhanced the interaction of L-FABP with the 33-kDa protein as well as other nuclear proteins.We propose that L-FABP is involved in communicating the state of fatty acid metabolism from the cytosol to the nucleus through an interaction with lipid mediators that are involved in nuclear signal transduction.  相似文献   

18.
The influence of pH and long-chain fatty acids on the interaction between aflatoxin B1 and human albumin was investigated by fluorescence spectroscopy. Both the binding of aflatoxin B1 to albumin and the fluorescence of albumin-bound aflatoxin are pH-dependent over the pH range of 6-9.5. The data indicates that the carcinogen has a higher affinity for the basic(B) than for the neutral(N) conformation of human albumin. Palmitic, stearic and oleic acids up to a molar ratio of 2 over albumin, increases the binding strength of aflatoxin B1 by means of an allosteric mechanism. Furthermore, the pH-dependence of the aflatoxin-albumin interaction is affected by the presence of oleic acid by narrowing the pH range over which the dependence occurs. At molar ratios of oleic acid to albumin in excess of 4.25 at pH6, 3.1 at pH7.4 and 2.4 at pH9 cause a decrease in aflatoxin B1 fluorescence as a result of reduced binding to albumin.  相似文献   

19.
We have previously shown that the uptake and transcytosis of albumin in astrocytes promote the synthesis of the neurotrophic factor oleic acid. Although the mechanism by which albumin induces oleic acid synthesis is well known, the mechanism of albumin uptake in astrocytes remains unknown. In this work, we found that astrocytes express megalin, an endocytic receptor for multiple ligands including albumin. In addition, when the activity of megalin is blocked by specific antibodies or by silencing megalin with specific siRNA, albumin binding and internalization is strongly reduced indicating that megalin is required for albumin binding and internalization in the astrocyte. Since the uptake of albumin in astrocytes aims at synthesizing the neurotrophic factor oleic acid, we tested the ability of megalin-silenced astrocytes to synthesize and release oleic acid in the presence of albumin. Our results showed that the amount of oleic acid found in the extracellular medium of megalin-silenced astrocytes was strongly reduced as compared with their controls. Together, the results of this work indicate that megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. Consequently, the possible involvement of albumin in the holoprosencephalic syndrome observed in megalin-deficient mice is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号