首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The antiprogesterone and antiglucocorticoid compound RU 486 added to pregnant rabbit mammary gland explant cultures had no effect alone but significantly stimulated casein production in the presence of ovine prolactin (PRL) in a dose dependent manner. This stimulation was inhibited by progesterone (Pg) and the Pg agonist R5020. When the explants were cultured for 5 days with two changes of medium, to eliminate all steroids, and hormones added afterwards, the effect of PRL was potentiated, Pg was no longer inhibitory and RU 486 had no effect, RU 486 also could inhibit the stimulatory action of glucocorticoids added to the cultures along with PRL. The compound was able to displace [3H]dexamethasone and [3H]R 5020 from mammary gland glucocorticoid and Pg receptors respectively and proved to have a high relative binding affinity (RBA) for both receptors when compared with typical ligands for each receptor. The RBAs of RU 486 and the steroids used in this study to mammary gland glucocorticoid and Pg receptors correlated well with the ability of RU 486 to block their biological activities. These results demonstrate that RU 486 has both antiglucocorticoid and antiprogesterone activities in pregnant rabbit mammary glands as well as the existence of a strong inhibitory residual action of Pg in the gland that persists during the first 48 h of culture and that can be eliminated by RU 486 or after several days of culture with no hormones.  相似文献   

3.
When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals (“chirps”). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7 d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5 h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.  相似文献   

4.
Ovarian cells of pregnant rats were cultured with synthetic progestins (R5020, R2323), dexamethasone and RU486. Progesterone and 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-dihydroprogesterone) in the medium were measured by specific radioimmunoassay. Both R5020 and R2323 increased concentrations of these intrinsic progestins. RU486 decreased concentrations of progesterone, however, the addition of R5020 or R2323 counteracted this action. Immature hypophysectomized rats treated with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) were administered with RU486; the serum levels of progesterone and 20 alpha-dihydroprogesterone tended to decrease. R5020 and R2323 inhibited the effect of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), whereas RU486 did not. Inhibition of the cholesterol side chain cleavage enzyme (CSCC) by RU486 was more marked than that by R5020 or R2323. These results show that RU486 decreases progesterone synthesis in cultured ovarian cells. A part of the mechanism may involve an inhibition of CSCC.  相似文献   

5.
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol+peanut oil, cortisol+RU486 (a glucocorticoid receptor antagonist) or cortisol+spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol+oil or cortisol+spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol+RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol+RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.Communicated by G. Heldmaier  相似文献   

6.
7.
The effect of progesterone on the differentiation of the 3T3-L1 preadipocytes was investigated and compared with other sex steroids (estradiol and testosterone), with cortisol, with the synthetic progestin R5020 and with the progestin/glucocorticoid antagonist RU38486. At 10−8 M, progesterone stimulated the activity of glycerol-3-phosphate dehydrogenase and triglyceride deposition. Progesterone, R5020, cortisol, and RU38486 increased triglycerides about 2-fold at 10−7 M. Only minimal effects were observed with testosterone and estradiol even at 10−6 M. When the cells were cultured in presence of 10−5 M metyrapone the effect of progesterone was unchanged, suggesting that the progesterone was not metabolized to a glucocorticoid. Progesterone, R5020 and RU38486 competed efficiently with [3H]dexamethasone for the glucocorticoid receptor in 3T3-L1 cytosol. These results indicate a significant, reproducible dose-dependent effect of progestins on differentiation of the preadipocytes, which appears to be mediated via the glucocorticoid receptor.  相似文献   

8.
9.
To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10 per thousand) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg(-1)) or high dose (200 mg.kg(-1)). Fish were transferred to 1.5 x seawater (45 per thousand) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors.  相似文献   

10.
11.
The third component of C, C3, is the key opsonin of the C cascade and is produced locally within the lung by pulmonary epithelial cells, macrophages, and fibroblasts. Because glucocorticoids regulate the maturation and expression of several physiologically important genes in pulmonary epithelial cells, we examined the effects of glucocorticoids on C3 mRNA expression and C3 synthesis by the human pulmonary epithelial cell line, A549. Treatment with dexamethasone enhanced C3 production in a time- and dose-dependent fashion such that concentrations of dexamethasone greater than or equal to 0.001 microM significantly increased C3 production on day 3 of culture. Natural glucocorticoids, corticosterone, cortisol, and 11-deoxycortisol also increased C3 concentrations in A549 supernatants. Both cycloheximide and the glucocorticoid receptor antagonist, RU486, individually inhibited the effect of dexamethasone on C3 production. Northern analysis demonstrated that the steady state 5.2-kb C3 message increased in A549 cells within 10 h of treatment with dexamethasone. RU486 inhibited the effect of dexamethasone on C3 mRNA expression. The integrity of the C3 thiolester bond, as measured by [3H]iodoacetic acid titration and hemolytic assay, was not disrupted by dexamethasone. We conclude that glucocorticoids such as dexamethasone enhance the expression of C3 mRNA and increase the production of functionally active C3 by A549 cells by a mechanism that is mediated by the intracellular glucocorticoid receptor.  相似文献   

12.
We have used a DNA-binding/immunoprecipitation assay to analyze the capacity of human glucocorticoid receptor (hGR), generated in rabbit reticulocyte lysates, to bind DNA. In vitro translated hGR was indistinguishable from native hGR, as determined by migration on sodium dodecyl sulfate-polyacrylamide gels, sedimentation on sucrose density gradients, and reactivity with antipeptide antibodies generated against hGR. In addition, cell-free synthesized hGR was capable of specific binding to glucocorticoid response element (GRE)-containing DNA fragments. Using this assay system, we have evaluated the contributions of ligand binding and heat activation to DNA binding by these glucocorticoid receptors. In vitro translated hGR was capable of selective DNA binding even in the absence of glucocorticoid. Treatment with dexamethasone or the antiglucocorticoid RU486 had no additional effect on the DNA-binding capacity when receptor preparations were maintained at 0 C (no activation). In contrast, addition of either ligand or antagonist in combination with a heat activation step promoted DNA binding by approximately 3-fold over that of heat-activated unliganded receptors. Agonist (dexamethasone) was slightly more effective in supporting specific DNA binding than antagonist (RU486). DNA binding by in vitro synthesized GR was blocked by the addition of sodium molybdate to the receptor preparations before steroid addition and thermal activation. Addition of KCl resulted in less DNA binding either due to blockage of DNA-receptor complex formation or disruption of the complexes. The specificity of DNA binding by cell-free synthesized hGR was analyzed further by examining the abilities of various DNAs to compete for binding to a naturally occurring GRE found in the mouse mammary tumor virus-long terminal repeat. Oligonucleotides containing the consensus GRE were the most efficient competitors, and fragments containing regulatory sequences from glucocorticoid-repressible genes were somewhat competitive, whereas single stranded oligonucleotides were unable to compete for mouse mammary tumor virus-long terminal repeat DNA binding, except when competitor was present at extremely high concentrations. Together these studies indicate that hGR synthesized in rabbit reticulocyte lysates displays many of the same properties, including GRE-specific DNA binding, observed for glucocorticoid receptor present in cytosolic extracts of mammalian cells and tissues. Similarities between the effects of dexamethasone and RU486 suggest that the antiglucocorticoid properties of RU486 do not occur at the level of specific DNA binding.  相似文献   

13.
This study examines the effect of the steroid analogue, RU486, on the physiological responses of fed and chronically fasted rainbow trout to an acute handling stressor. This potent ligand of the glucocorticoid receptor was administered as a slow-release implant either alone, or in combination with cortisol. There were temporal changes in plasma cortisol concentrations following administration of cortisol implants in both fed and fasted trout. By day 14, plasma cortisol levels in fed fish were similar in all treatment groups, but in fasted fish, the effect of cortisol administration on plasma cortisol concentrations was still evident; RU486 administered with cortisol, did not affect this response. Cortisol administration also elicited a small, but significant increase in plasma GH concentrations in fed rainbow trout and in plasma glucose concentrations in fasted animals. RU486-treatment prevented these responses. Conversely, whereas RU486 alone had no effect on hepatic 5'-monodeiodinase activity, when administered with cortisol it enhanced the marked suppressive effect of cortisol evident in both fed and fasted groups, suggesting that it may exert an interactive effect with cortisol on this process. Stressor-related changes in plasma cortisol, glucose, GH and thyroid hormone concentrations were evident in both fed and fasted groups; however, there was no evidence of a suppressive effect of RU486 treatment on any of the measured plasma parameters. Although RU486 did not prevent the stressor-related changes, the post-stressor cortisol profiles in RU-treated trout were extremely erratic compared with the oil-treated controls. This implies a disturbance of the normal interactions of the components of the hypothalamus-pituitary-interrenal tissue axis.  相似文献   

14.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

15.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

16.
The glucocorticoid analogue RU486 was administered by intraperitoneal injection to brook charr (Salvelinus fontinalis) to further explore the role of cortisol on aspects of intermediary and thyroid hormone metabolism of the species. RU486 significantly elevated the hepatosomatic index, hepatic G3PDH activity, and hepatic glycogen content, but was without effect on hepatic protein content, hepatic FPBase activity, or plasma glucose concentration. However, the stressor-related increase in plasma glucose concentration that was evident in brook charr 24 h following handling and injection was suppressed in RU486-treated groups. The distribution volume, turnover rates, and metabolic clearance rates of [3H]cortisol were similar in RU486- and vehicle-treated groups. Plasma T3 and T4 concentrations were similar in RU486- and vehicle-treated groups, but hepatic T3 production and hepatic T3 content were lower in RU486-treated fish; TSH had no effect on hepatic T3 content of vehicle-treated brook charr but significantly increased T3 content in the RU486-treated group. These observations support the concept of a role of cortisol in the control of peripheral monodeiodination of T4 in salmonid fish and suggest that RU486 may be a useful drug for evaluating the role of cortisol in fish in vivo.  相似文献   

17.
Glucocorticoids increase expression of specific genes by a mechanism involving binding to and "activation" of a specific receptor protein. Other steroids, such as RU 486, bind to the glucocorticoid receptor but the resultant steroid-receptor complex is unable to activate glucocorticoid sensitive genes. In the present study we have observed that steroid regulation of the glucocorticoid-regulated mouse mammary tumor virus (MMTV) genome in cultured mouse mammary tumor cells is altered by treatment of the cells with inhibitors of (ADP-ribose)n synthetase. The ability of glucocorticoid agonists to increase MMTV is about 2-fold increased by the inhibitor treatment. Interestingly, RU 486 and other steroids that are normally inactive in control cells are very good inducers of MMTV in the treated cells. This alteration in MMTV expression is associated with a 37% increase in nuclear binding of the glucocorticoid, triamcinolone acetonide, and also RU 486 in the inhibitor-treated cells. Steroids that do not bind to the glucocorticoid receptor are not inducers in control or in treated cells. The results point to a role for ADP-ribosylation of proteins as a negative regulator of MMTV expression and suggest a mechanism for activation of steroid-sensitive genomes.  相似文献   

18.
In v-mos transformed cells, glucocorticoid receptor (GR) proteins that bind hormone agonist are not efficiently retained within nuclei and redistribute to the cytoplasmic compartment. These cytoplasmic desensitized receptors cannot be reutilized and may represent trapped intermediates derived from GR recycling. We have used the glucocorticoid antagonist RU486 to examine whether v-mos effects can be exerted on any ligand-bound GR. In the rat 6m2 cell line that expresses a temperature-sensitive p85gag-mos oncoprotein, RU486 is a complete antagonist and suppresses dexamethasone induction of metallothionein-1 mRNA at equimolar concentrations. Using indirect immunofluorescence, we observe efficient nuclear translocation of GR in response to RU486 treatment in either the presence or absence of v-mos oncoproteins. However, in contrast to the redistribution of agonist-bound nuclear receptors to the cytoplasm of v-mos-transformed cells, RU486-bound GRs are efficiently retained within nuclei. Interestingly, withdrawal of RU486 does not lead to efficient depletion of nuclear GR in either nontransformed or v-mos transformed cells. It is only after the addition of hormone agonist to RU486 withdrawn v-mos-transformed cells that GRs are depleted from nuclei and subsequently redistributed to the cytoplasm. Thus, only nuclear GRs that are agonist-bound and capable of modulating gene activity can be subsequently processed and recycled into the cytoplasm.  相似文献   

19.
The objective of this study was to investigate the possible involvement of cortisol in controlling urea metabolism and excretion in the ammoniotelic rainbow trout (Oncorhynchus mykiss). Trout fitted with dorsal aortic and internal urinary catheters received either no implant (control), or were implanted with coconut oil (sham), cortisol in coconut oil, RU486, a glucocorticoid receptor blocker, in coconut oil, or cortisol+RU486 in coconut oil, and monitored over 72 h. Rainbow trout treated with cortisol (±RU486) had similarly elevated plasma cortisol concentrations that were six fold greater than in control and sham fish. Elevated circulating cortisol concentrations caused a three-fold rise in plasma and urine urea concentrations, which was blocked by RU486. Similarly, a positive correlation between plasma cortisol and plasma urea concentrations was observed in fish treated with cortisol alone but not in fish treated with cortisol+RU486. Cortisol treatment caused an elevation in branchial (two fold higher) and urinary (three fold higher) excretion rates of urea compared to sham-implanted fish, which was prevented by treatment with RU486. However, as branchial and renal clearance were unaffected, there appears to be no stimulation or inhibition of urea excretion mechanisms in the gill or kidney separate from effects due to changes in plasma urea concentrations. Thus, cortisol and glucocorticoid receptors appear to be involved in the regulation of endogenous urea production but not in the control of urea excretory mechanisms in the ammoniotelic trout.Abbreviations GFR glomerular filtration rate - GS glutamine synthetase - O-UC ornithine urea cycle - PEG polyethylene glycol - UFR urine flow rate Communicated by: G. Heldmaier  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号