首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which the contractile machinery of muscle is assembled and maintained is not well-understood. Members of the cysteine-rich protein (CRP) family have been implicated in these processes. Three vertebrate CRPs (CRP1-3) that exhibit developmentally regulated muscle-specific expression have been identified. All three proteins are associated with the actin cytoskeleton, and one has been shown to be required for striated muscle structure and function. The vertebrate CRPs identified to date display a similar molecular architecture; each protein is comprised of two tandemly arrayed LIM domains, protein-binding motifs found in a number of proteins with roles in cell differentiation. Each LIM domain coordinates two Zn(II) ions that are bound independently in CCHC (C=Cys, H=His) and CCCC modules. Here we describe the solution structure of chicken CRP1 determined by homonuclear and 1H-15N heteronuclear magnetic resonance spectroscopy. Comparison of the structures of the two LIM domains of CRP1 reveals a high degree of similarity in their tertiary folds. In addition, the two component LIM domains represent two completely independent folding units and exhibit no apparent interactions with each other. The structural independence and spatial separation of the two LIM domains of CRP1 are compatible with an adapter or linker role for the protein.  相似文献   

2.
The family of cysteine rich proteins (CRP) comprises three closely homologous members that have been reported to interact with α-actinin. Muscular LIM protein (MLP/CRP3), the skeletal muscle variant, was originally discovered as a positive regulator of myogenesis and is suggested to be part of the stretch sensor of the myofibril through its interaction with telethonin (T-Cap). We determined the structure of both LIM domains of human MLP by nuclear magnetic resonance spectroscopy. We confirm by 15N relaxation measurements that both LIM domains act as independent units and that the adjacent linker regions are fully flexible. With the published structures of CRP1 and CRP2, the complete family has now been structurally characterized.  相似文献   

3.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

4.
5.
6.
The LIM domain is a conserved cysteine and histidine-containing structural module of two tandemly arranged zinc fingers. It has been identified in single or multiple copies in a variety of regulatory proteins, either in combination with defined functional domains, like homeodomains, or alone, like in the CRP family of LIM proteins. Structural studies of CRP proteins have allowed a detailed evaluation of interactions in LIM-domains at the molecular level. The packing interactions in the hydrophobic core have been identified as a significant contribution to the LIM domain fold, whereas hydrogen bonding within each single zinc binding site stabilizes zinc finger geometry in a so-called "outer" or "indirect" coordination sphere. Here we report the solution structure of a point-mutant of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein CRP2, CRP2(LIM2)R122A, and discuss the structural consequences of the disruption of the hydrogen bond formed between the guanidinium side-chain of Arg122 and the zinc-coordinating cysteine thiolate group in the CCHC rubredoxin-knuckle. The structural analysis revealed that the three-dimensional structure of the CCHC zinc binding site in CRP2(LIM2)R122A is adapted as a consequence of the modified hydrogen bonding pattern. Additionally, as a result of the conformational rearrangement of the zinc binding site, the packing interactions in the hydrophobic core region are altered, leading to a change in the relative orientation of the two zinc fingers with a concomitant change in the solvent accessibilities of hydrophobic residues located at the interface of the two modules. The backbone dynamics of residues located in the folded part of CRP2(LIM2)R122A have been characterized by proton-detected(15)N NMR spectroscopy. Analysis of the R2/R1ratios revealed a rotational correlation time of approximately 6.2 ns and tumbling with an axially symmetric diffusion tensor (D parallel/D perpendicular=1.43). The relaxation data were also analyzed using a reduced spectral density mapping approach. As in wild-type CRP2(LIM2), significant mobility on a picosecond/nanosecond time-scale was detected, and conformational exchange on a microsecond time-scale was identified for residues located in loop regions between secondary structure elements. In summary, the relative orientation of the two zinc binding sites and the accessibility of hydrophobic residues is not only determined by hydrophobic interactions, but can also be modified by the formation and/or breakage of hydrogen bonds. This may be important for the molecular interactions of an adaptor-type LIM domain protein in macromolecular complexes, particularly for the modulation of protein-protein interactions.  相似文献   

7.
8.
Schüler W  Kloiber K  Matt T  Bister K  Konrat R 《Biochemistry》2001,40(32):9596-9604
The solution structure of quail CRP2(LIM2) was significantly improved by using an increased number of NOE constraints obtained from a 13C,15N-labeled protein sample and by applying a recently developed triple-resonance cross-correlated relaxation experiment for the determination of the backbone dihedral angle psi. Additionally, the relative orientation of the 15N(i)-1HN(i) dipole and the 13CO(i) CSA tensor, which is related to both backbone angles phi and psi, was probed by nitrogen-carbonyl multiple-quantum relaxation and used as an additional constraint for the refinement of the local geometry of the metal-coordination sites in CRP2(LIM2). The backbone dynamics of residues located in the folded part of CRP2(LIM2) have been characterized by proton-detected 13C'(i-1)-15N(i) and 15N(i)-1HN(i) multiple-quantum relaxation, respectively. We show that regions having cross-correlated time modulation of backbone isotropic chemical shifts on the millisecond to microsecond time scale correlate with residues that are structurally altered in the mutant protein CRP2(LIM2)R122A (disruption of the CCHC zinc-finger stabilizing side-chain hydrogen bond) and that these residues are part of an extended hydrogen-bonding network connecting the two zinc-binding sites. This indicates the presence of long-range collective motions in the two zinc-binding subdomains. The conformational plasticity of the LIM domain may be of functional relevance for this important protein recognition motif.  相似文献   

9.
10.
hhLIM是LIM蛋白家族成员之一,该蛋白质含有两个LIM结构域,在基因表达调节、细胞骨架组构及细胞肥大过程中发挥重要作用.构建hhLIM不同LIM结构域的突变体,探讨其两个LIM结构域在与actin相互结合中的作用及其可能机制.GST-pull down和hhLIM及其突变体与actin细胞定位关系的免疫荧光分析结果表明,C端的LIM结构域2是hhLIM与actin结合所必需的,该结构域中的两个Cys置换为Ser后可使hhLIM结合actin的功能完全丧失,N端的LIM结构域1突变使hhLIM结合actin的能力下降.F-actin交联实验结果显示,hhLIM通过LIM结构域2与actin直接结合并起到交联F-actin的作用.结果表明,LIM结构域2在hhLIM与actin相互作用及调节actin细胞骨架组构中起决定性作用.  相似文献   

11.
Enigma proteins are proteins that possess a PDZ domain at the amino terminal and one to three LIM domains at the carboxyl terminal. They are cytoplasmic proteins that are involved with the cytoskeleton and signal transduction pathway. By virtue of the two protein interacting domains, they are capable of protein-protein interactions. Here we report a study on a human Enigma protein hCLIM1, in particular. Our study describes the interaction of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1), the human homologue of CLP36 in rat, with alpha-actinin 2, the skeletal muscle isoform of alpha-actinin. hCLIM1 protein was shown to interact with alpha-actinin 2 by yeast two-hybrid screening and immunochemical analyses. Yeast two-hybrid analyses also demonstrated that the LIM domain of hCLIM1 binds to the EF-hand region of alpha-actinin 2, defining a new mode of LIM domain interactions. Immunofluorescent study demonstrates that hCLIM1 colocalizes with alpha-actinin at the Z-disks in human myocardium. Taken together, our experimental results suggest that hCLIM1is a novel cytoskeletal protein and may act as an adapter that brings other proteins to the cytoskeleton.  相似文献   

12.
13.
14.
Lin-11, Isl-1 and Mec-3 (LIM) kinases are serine/threonine kinases that phosphorylate cofilin, an actin depolymerizing protein. LIM kinases have a highly modular structure composed of two N-terminal LIM domains (LIM 1/2), a PSD-95, Dlg and ZO-1 (PDZ) domain and a C-terminal protein kinase domain. Here, we overexpressed individual domains of mouse LIM kinase 1 (LIMK1) in PC12 cells and investigated their effects on neurite outgrowth. Although none of the LIMK1 domains had an effect on spontaneous neurite outgrowth, the N-terminal LIM 1/2 domains strongly inhibited differentiation of PC12 cells after stimulation with both nerve growth factor (NGF) and the Rho-kinase inhibitor Y-27632. In contrast, the overexpressed PDZ domain reduced neurite outgrowth only when differentiation had been induced by Y-27632, but not by NGF. Our data suggest that the different non-catalytic N-terminal domains of LIMK1 contribute to the regulation of neurite extension by using distinct signal transduction pathways.  相似文献   

15.
We have cloned and characterized a novel striated muscle-restricted protein (Cypher) that has two mRNA splice variants, designated Cypher1 and Cypher2. Both proteins contain an amino-terminal PDZ domain. Cypher1, but not Cypher2, contains three carboxyl-terminal LIM domains and an amino acid repeat sequence that exhibits homology to a repeat sequence found in the largest subunit of RNA polymerase II. cypher1 and cypher2 mRNAs exhibited identical expression patterns. Both are exclusively expressed in cardiac and striated muscle in embryonic and adult stages. By biochemical assays, we have demonstrated that Cypher1 and Cypher2 bind to alpha-actinin-2 via their PDZ domains. This interaction has been further confirmed by immunohistochemical studies that demonstrated co-localization of Cypher and alpha-actinin at the Z-lines of cardiac muscle. We have also found that Cypher1 binds to protein kinase C through its LIM domains. Phosphorylation of Cypher by protein kinase C has demonstrated the functional significance of this interaction. Together, our data suggest that Cypher1 may function as an adaptor in striated muscle to couple protein kinase C-mediated signaling, via its LIM domains, to the cytoskeleton (alpha-actinin-2) through its PDZ domain.  相似文献   

16.
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.  相似文献   

17.
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.  相似文献   

18.
The LIM domains of WLIM1 define a new class of actin bundling modules   总被引:2,自引:0,他引:2  
Actin filament bundling, i.e. the formation of actin cables, is an important process that relies on proteins able to directly bind and cross-link subunits of adjacent actin filaments. Animal cysteine-rich proteins and their plant counterparts are two LIM domain-containing proteins that were recently suggested to define a new family of actin cytoskeleton regulators involved in actin filament bundling. We here identified the LIM domains as responsible for F-actin binding and bundling activities of the tobacco WLIM1. The deletion of one of the two LIM domains reduced significantly, but did not entirely abolish, the ability of WLIM1 to bind actin filaments. Individual LIM domains were found to interact directly with actin filaments, although with a reduced affinity compared with the native protein. Variants lacking the C-terminal or the inter-LIM domain were only weakly affected in their F-actin stabilizing and bundling activities and trigger the formation of thick cables containing tightly packed actin filaments as does the native protein. In contrast, the deletion of one of the two LIM domains negatively impacted both activities and resulted in the formation of thinner and wavier cables. In conclusion, we demonstrate that the LIM domains of WLIM1 are new autonomous actin binding and bundling modules that cooperate to confer WLIM1 high actin binding and bundling activities.  相似文献   

19.
20.
The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.Key words: Actin-binding proteins, actin-bundling, cysteine-rich proteins, cytoskeleton, LIM domainThe LIM domain is a ≈55 amino acid peptide domain that was first identified in 1990 as a common cystein-rich sequence found in the three homeodomain proteins LIN-11, Isl1 and MEC-3. It has since been found in a wide variety of eukaryotic proteins of diverse functions. Animals possess several families of LIM proteins, with members containing 1–5 LIM domains occasionally linked to other catalytic or protein-binding domains such as homeodomain, kinase and SH3 domains. In contrast, plants only possess two distinct sets of LIM proteins. One is plant-specific and has not been functionally characterized yet. The other one comprises proteins that exhibit the same overall structure as the animal cystein rich proteins (CRPs), i.e., two very similar LIM domains separated by a ≈50 amino acid-long interLIM domain and a relatively short and variable C-terminal domain (Fig. 1A). The mouse CRP2 protein was the first CRP reported to interact directly with actin filaments (AF) and to stabilize the latter.1 Identical observations were subsequently described for the chicken CRP1 and tobacco WLIM1 proteins.2,3 In addition, these two proteins were shown to arrange AF into cables both in vitro and in vivo and thus join the list of actin bundlers.Open in a separate windowFigure 1Domain maps for wild-type WLIM1 (A) and GFP-fused chimeric 3xWLIM1 (B). A. WLIM1 basically comprises a short N-terminal domain (Nt), two LIM domains (LIM1 and LIM2), an interLIM spacer (IL) and a C-terminal domain (Ct). B. 3xWLIM1 consists of three tandem WLIM1 copies. This chimeric protein has been fused in C-terminus to GFP and transiently expressed in tobacco BY2 cells.To identify the peptide domains of WLIM1 responsible for its actin-related properties/activities, we generated domain-deleted and single domain variants and submitted them to a series of in vivo and in vitro assays.4 Localization experiments established that both LIM domains are required to efficiently target the actin cytoskeleton in tobacco BY2 cells. High-speed (200,000 g) cosedimentation data confirmed that the actin-binding activity of WLIM1 relies on its LIM domains. Indeed, the deletion of either the first or the second LIM domain respectively resulted in a 5-fold and 10-fold decrease of the protein affinity for AF. Importantly, each single LIM domain was found able to interact with AF in an autonomous manner, although with a reduced affinity compared to the wild-type WLIM1. Low-speed (12,500 g) cosedimentation data and electron microscopy observations revealed that the actin bundling activity of WLIM1 is also triggered by its LIM domains. Surprisingly each single LIM domain was able to bundle AF in an autonomous manner, suggesting that WLIM1 has two discrete actin-bundling sites. However, the bundles induced by the variants containing only one LIM domain, i.e., LIM domain-deleted mutants and single LIM domains, differed from those induced by the full-length WLIM1. They appeared more wavy and loosely packed and formed only at relatively high protein:actin ratios. Together these data suggest that LIM domains are autonomous actin-binding and -bundling modules that function in synergy in wild-type WLIM1 to achieve optimal activities.To further assess the mechanism of cooperation between the LIM domains of plant CRP-related proteins, we generated a chimeric protein composed of three WLIM1 copies in tandem (3 × WLIM1, Fig. 1B), and transiently expressed it as a GFP-fusion in tobacco BY2 cells. We anticipated that such a six LIM domain-containing protein displays an even higher actin-bundling activity. (Fig. 2A) shows the typical actin cytoskeleton pattern in an expanding BY2 cell as visualized using the actin marker GFP-fABD2.5 As previously reported by Sheahan et al.,5 GFP-fABD2 decorated dense, transversely oriented, cortical networks as well as transvacuolar strands connecting the subcortical-perinuclear region to the cortex. Ectopic expression of WLIM1-GFP (BY2 cells normally do not express the WLIM1 gene) induced moderate but perceptible modifications of the actin cytoskeleton structure (Fig. 2B). Most AF are arranged in bundles thicker than those observed in GFP-fABD2 expressing cells and fine AF arrays are less frequently observed. As expected, this phenotype was significantly enhanced in cells transformed with the 3xWLIM1-GFP protein (Fig. 2C). Indeed, cells were almost devoided of fine AF arrays and exhibited very thick actin cables (Fig. 2C) that, at times (≈30 %), form atypical long looped structures (Fig. 2D). The appearance of such structures may result from the increase of cable stability and thickness induced by the 3xWLIM1-GFP protein, as these parameters are likely to determine, at least partially, the maximal length of actin bundles. Together the present observations support earlier data showing that LIM domains work in concert in LIM proteins to regulate actin bundling in plant cells. Strikingly, vertebrate and plant CRPs invariably contain two LIM domains. The lack, in these organisms, of CRP-related proteins combining more than two LIM domains may be explained by the fact that very thick cables, such as those induced by the artificial 3xWLIM1, may be too stable structures incompatible with the necessary high degree of actin cytoskeleton plasticity. As an exception, a muscle CRP-related protein with five LIM domains (Mlp84B) has been identified in Drosophila.6 However, rather than decorating actin filaments in an homogenous manner, this protein has been found to concentrate in a specialized region of the Z-discs where it stabilizes, in concert with D-titin, muscle sarcomeres.7Open in a separate windowFigure 2Typical actin cytoskeleton patterns in tobacco BY2 cells that have been transiently transformed, using a particle gun, with GFP-fABD2 (A), WLIM1-GFP (B), and 3xWLIM1-GFP (C and D). For each construct, more than 60 cells were analyzed by confocal microscopy. In the case of 3xWLIM1-GFP, two prevalent patterns have been observed (C and D). Bars = 20 µm.The relatively well conserved spacer length (≈50 amino acids) that separates the two LIM domains in vertebrate CRPs and related plant LIM proteins remains an intriguing feature the importance of which in actin cable organization remains to be established. Using electron microscopy we are currently evaluating the effects of the modification of the interLIM domain length on the structural properties of actin cables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号