首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven transposon mutant strains affected in bile acid catabolism were each found to form yellow, muconic-like intermediates from bile acids. To characterize these unstable intermediates, media from the growth of one of these mutants with deoxycholic acid was treated with ammonia, then the crude product was methylated with diazomethane. Four compounds were subsequently isolated; spectral evidence suggested that they were methyl 12 alpha-hydroxy-3-oxo-23,24-dinorchola-1,4-dien-22-oate, methyl 4-aza-12 beta-hydroxy-9(10)-secoandrosta-1,3,5-triene-9,17-dione-3-carboxyl ate, 4-aza-9 alpha, 12 beta-dihydroxy-9(10)-secoandrosta-1,3,5-trien-17-one-3- methyl carboxylate and 4 alpha-[3'-propionic acid]-5-amino-7 beta-hydroxy-7 alpha beta-methyl- 3a alpha, 4,7,7a-tetrahydro-1-indanone-delta-lactam. It is proposed that the mutants are blocked in the utilization of such muconic-like compounds as the 3,12 beta-dihydroxy-5,9,17-trioxo-4(5),9(10)- disecoandrostal (10),2-dien-4-oic acid formed from deoxycholic acid. A further mutant was examined, which converted deoxycholic acid to 12 alpha-hydroxyandrosta-1,4-dien-3,17-dione, but accumulated yellow products from steroids which lacked a 12 alpha-hydroxy function, such as chenodeoxycholic acid. The products from the latter acid were treated as above; spectral evidence suggested that the two compounds isolated were methyl 4-aza-7-hydroxy-9(10)-secoandrosta-1,3,5- triene-9,17-dione-3-carboxylate and 4 alpha-[1'alpha-hydroxy-3'-propionic acid]-5-amino-7a beta-methyl-3a alpha,4,7,7a-tetrahydro-1-indanone-delta-lactam.  相似文献   

2.
We devised a method to screen for microorganisms capable of growing on bile acids in the presence of organic solvents and producing organic solvent-soluble derivatives. Pseudomonas putida biovar A strain ST-491 isolated in this study produced decarboxylated derivatives from the bile acids. Strain ST-491 grown on 0.5% lithocholic acid catabolized approximately 30% of the substrate as a carbon source, and transiently accumulated in the medium androsta-1,4-diene-3,17-dione in an amount of corresponding to 5% of the substrate added. When 20% (v/v) diphenyl ether was added to the medium, 60% of the substrate was converted to 17-keto steroids (androst-4-ene-3,17-dione-like steroid, androsta-1,4-diene-3,17-dione) or a 22-aldehyde steroid (pregna-1,4-dien-3-on-20-al). Amounts of the products were responsible for 45, 10, and 5% of the substrate, respectively. In the presence of the surfactant Triton X-100 instead of diphenyl ether, 40% of the substrate was converted exclusively to androsta-1,4-diene-3,17-dione.  相似文献   

3.
The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590.   总被引:5,自引:2,他引:3  
The microbial degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 was studied, and two major products were isolated and identified as 7 alpha, 12 beta-dihydroxyandrosta-1,4-diene-3,17-dione and 7 alpha, 12 alpha-dihydroxy-3-oxopregna-1,4-diene-20-carboxylic acid. Four minor products were isolated and evidence is given for the following structures: 7 alpha, 12 alpha-dihydroxyandrosta-1,4-diene-3,17-dione, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 7 alpha, 12 beta, 17 beta-trihydroxyandrosta-1,4-dien-3-one and 7 alpha, 12 alpha-dihydroxy-3-oxopregn-4-ene-20-carboxylic acid. The significance of the production of the steroid products is discussed, along with the possible enzymic mechanisms responsible for their production.  相似文献   

4.
The bacterial degradation of hyodeoxycholic acid under anaerobic conditions was studied. The major acidic product has been identified as 6 alpha-hydroxy-3-oxochol-4-ene-24-oic acid whilst the major neutral product has been identified as 6 alpha-hydroxyandrosta-1,4-diene-3,17-dione. The minor acidic products were 3,6-dioxochola-1,4-diene-24-oic acid, 3-oxochol-5-ene-24-oic acid, 3-oxochol-4-ene-24-oic acid, 3-oxochola-1,4-diene-24-oic acid and 6 alpha-hydroxy-3-oxochola-1,4-diene-24-oic acid and the minor neutral products were androst-4-ene-3,17-dione, androst-4-ene-3,6,17-trione, androsta-1,4-diene-3,6,17-trione, androsta-1,4-diene-3,17-dione, 17 beta-hydroxyandrosta-1,4-diene-3-one and 6 alpha-hydroxyandrost-4-ene-3,17-dione. Evidence is presented which suggests that under aerobic conditions, one pathway of hyodeoxycholic acid metabolism exists whilst under anaerobic conditions an extra biotransformation pathway becomes operative involving the induction of a 6 alpha-dehydroxylase enzyme. A biochemical pathway of hyodeoxycholic acid metabolism by bacteria under anaerobic conditions is discussed incorporating a scheme involving such an enzyme.  相似文献   

5.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

6.
The fermentation of progesterone by Colletotrichum antirrhini SC 2144 was examined. Instead of 15 alpha-hydroxyprogesterone, the reported product, this fungus converted progesterone to androst-4-ene-3,17-dione, androsta-1,4-diene-3,17-dione, 14 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 11 alpha-hydroxypregn-4-ene-3,20-dione, 14 alpha-hydroxypregn-4-ene-3,20-dione, and a hitherto undescribed compound, 14 alpha-hydroxypregna-1,4-diene-3,20-dione.  相似文献   

7.
Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an α-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12α-hydroxyandrosta-1,4,6-triene-3,17-dione and 12β-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.  相似文献   

8.
The bacterial degradation of beta-sitosterol by Pseudomonas sp NCIB 10590 has been studied. Major biotransformation products included 24-ethylcholest-4-en-3-one, androsta-1,4-diene-3,17-dione, 3-oxochol-4-en-3-one-24-oic acid and 3-oxopregn-4-en-3-one-20-carboxylic acid. Minor products identified were 26-hydroxy-24-ethylcholest-4-en-3-one, androst-4-ene-3,17-dione, 3-oxo-24-ethylcholest-4-en-26-oic acid, 3-oxochola-1,4-dien-3-one-24-oic acid, 3-oxopregna-1,4-dien-3-one-20 carboxylic acid and 9 alpha-hydroxyandrosta-1,4-diene-3,17-dione. Studies with selected inhibitors have enabled the elucidation of a comprehensive pathway of beta-sitosterol degradation by bacteria.  相似文献   

9.
Recognition of D-homoannulation by proton and carbon NMR spectra   总被引:1,自引:0,他引:1  
L L Smith  E L Ezell 《Steroids》1989,53(3-5):513-531
One-and two dimensional proton and carbon NMR spectra of the D-homoannulated rearrangement product of triamcinolone (9 alpha-fluoro-11 beta,16 alpha,17 alpha, 21-tetrahydroxy-pregna-1,4-diene-3,20-dione) establish its structure as that of 9 alpha-fluoro-11 beta,16 alpha,17 alpha-trihydroxy-17 beta-hydroxy-methyl-D-homoandrosta-1,4-diene-3,17 alpha-dione. These methods accord ready recognition of D-homoannulation of C21-17-hydroxy-20-ketosteroids.  相似文献   

10.
Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism.  相似文献   

11.
Mycobacterium sp. VKM Ac-1815D and its derivatives with altered resistance to antibacterial agents were able to produce androst-4-ene-3,17-dione (AD) as a major product from sitosterol. In this study, those strains were subjected to subsequent mutagenization by chemical agents and UV irradiation in combination with sitosterol selection pressure. The mutant Mycobacterium sp. 2-4 M was selected, being capable of producing 9-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) as a major product from sitosterol, with a 50% molar yield. Along with 9-OH-AD, both AD and 9-hydroxylated metabolites with a partially degraded side-chain were formed from sitosterol by the mutant strain. The strain was unable to degrade 9-OH-AD, but degraded androsta-1,4-diene-3,17-dione (ADD), thus indicating a deficiency in steroid 1(2)-dehydrogenase and the presence of 9-hydroxylase activity.  相似文献   

12.
R.J. Park 《Steroids》1984,44(2):175-193
The obligate aerobe, Pseudomonas putida ATCC 31752, efficiently utilises bile acids as a source of carbon and energy for growth and maintenance. When aeration is considerably restricted, a consequence to the catabolism of the bile acids in a fermentor is an accumulation of certain steroidal catabolites. Evidence is presented to show that among these are hydroxy-9,10-seco-1,3,5(10)-androstratriene-9,17-diones and those from four of the common bile acids, cholic, chenodeoxycholic, hyodeoxycholic and deoxycholic acids have been isolated and their structures determined. The product of catabolism of hyodeoxycholic acid appears to exist in a hemi-acetal form which readily forms an acetal during isolation procedures. All but one of these are described for the first time.  相似文献   

13.
The biotransformation of lithocholic acid by Pseudomonas sp. strain NCIB 10590 under anaerobic conditions was studied. The major products were identified as androsta-1,4-diene-3,17-dione and 3-oxochol-4-ene-24-oic acid. The minor products included 17β-hydroxyandrost-4-ene-3-one, 17β-hydroxyandrosta-1,4-diene-3-one, 3-oxo-5β-cholan-24-oic acid, 3-oxochola-1,4-diene-24-oic acid, 3-oxopregn-4-ene-20-carboxylic acid, and 3-oxopregna-1,4-diene-20-carboxylic acid. Anaerobiosis increases the number of metabolites produced by Pseudomonas sp. NCIB 10590 from lithocholic acid.  相似文献   

14.
A product of microbiological cleavage of the sterols side chain, androsta-1,4-diene-3,17-dione, is toxic for bacteria, in particular, actinobacteria of the genera Mycobacterium and Arthrobacter. Sterols were transformed into androsta-1,4-diene-3,17-dione by culturing the M. neoaurum VKPM An-1656 strain in a high yield, provided that a sorbent was used for elimination of contact between the bacterial cells and the product. Unlike the cholesterol side chain, the more branched chains of phytosterols were cleaved in the presence of M. neoaurum at a high rate only under turbulent stirring of the culture medium, which intensified the formation of hydrocarbonate ion from NaNI3 in situ.  相似文献   

15.
Yan JL  Lee SS  Wang KC 《Steroids》2000,65(12):863-870
Incubation of 3beta-hydroxy-5,6alpha-cyclopropano-5alpha-cholestane (4), 3beta-hydroxy-5,6beta-cyclopropano-5beta-cholestane (5), and 3beta-hydroxy-5,6alpha-cyclopropano-5alpha-cholest-7-e ne (6) with Mycobacterium sp. (NRRL B-3805) gave a mixture of side chain cleaved 17-keto steroids as the major products in 52, 57, and 69% yields, respectively. Among these 17-keto steroids, the cyclopropyl ring eliminated product, androst-4-ene-3,17-dione (9), was isolated in 6, 4, and 8% yields, respectively. A cyclopropyl ring migration product, 6alpha,7alpha-cyclopropanoandrost-4-ene-3,17-dione (16), was isolated from the incubation mixture of 6 in 4% yield, also 10% yield of 16 was obtained when 5, 6alpha-cyclopropano-5alpha-androst-7-ene-3,17-dione (12) was incubated. The cyclopropyl ring opening and subsequent reduction followed by oxidation of the two major biotransformation products, 5, 6beta-cyclopropano-5beta-androsta-3,17-dione (10) and 5, 6alpha-cyclopropano-5alpha-androsta-3,17-dione (7), gave 6beta- and 6alpha-methylandrost-4-ene-3,17-dione in 60, and 45% yields, respectively.  相似文献   

16.
Examination of some previously isolated bile acid-utilizing Pseudomonas strains showed that Pseudomonas sp. ATCC 31752, together with other fluorescent strains, can be assigned to Pseudomonas putida biotype B, whereas Pseudomonas sp. ATCC 31753, like most other nonfluorescent strains, is an unrecognized phenotype. A study was made of the growth of these two species at 25 degrees C and pH 7.0 in a fermentor with 2.5 g of sodium cholate liter-1 as sole carbon source, and the catabolism of the cholate and its products was followed by high-pressure liquid chromatographic and thin-layer chromatographic examination. At aeration rates of either 150 or 5 ml min-1 liter-1, growth of each species followed the same catabolic pathway. 7 alpha, 12 beta-Dihydroxy-1,4-androstadiene-3,17-dione was the major catabolite formed, with 0.3 g liter-1 being the maximum concentration that accumulated at the higher aeration rate, whereas 1.4 g liter-1 accumulated at the lower aeration rate, irrespective of the species used. The latter yield is sufficiently high to be of potential commercial value if such a catabolite were found to be economically useful for steroid drug manufacture. It is postulated that the rate-limiting step in cholic acid catabolism by these species at the lower aeration rate is 9 alpha-hydroxylation, a step requiring molecular oxygen, hence, the marked effect of oxygen limitation on catabolite accumulation. Another consequence of oxygen limitation is the production of a red pigment in the culture medium, which, however, does not affect catabolite recovery.  相似文献   

17.
Examination of some previously isolated bile acid-utilizing Pseudomonas strains showed that Pseudomonas sp. ATCC 31752, together with other fluorescent strains, can be assigned to Pseudomonas putida biotype B, whereas Pseudomonas sp. ATCC 31753, like most other nonfluorescent strains, is an unrecognized phenotype. A study was made of the growth of these two species at 25 degrees C and pH 7.0 in a fermentor with 2.5 g of sodium cholate liter-1 as sole carbon source, and the catabolism of the cholate and its products was followed by high-pressure liquid chromatographic and thin-layer chromatographic examination. At aeration rates of either 150 or 5 ml min-1 liter-1, growth of each species followed the same catabolic pathway. 7 alpha, 12 beta-Dihydroxy-1,4-androstadiene-3,17-dione was the major catabolite formed, with 0.3 g liter-1 being the maximum concentration that accumulated at the higher aeration rate, whereas 1.4 g liter-1 accumulated at the lower aeration rate, irrespective of the species used. The latter yield is sufficiently high to be of potential commercial value if such a catabolite were found to be economically useful for steroid drug manufacture. It is postulated that the rate-limiting step in cholic acid catabolism by these species at the lower aeration rate is 9 alpha-hydroxylation, a step requiring molecular oxygen, hence, the marked effect of oxygen limitation on catabolite accumulation. Another consequence of oxygen limitation is the production of a red pigment in the culture medium, which, however, does not affect catabolite recovery.  相似文献   

18.
Degradations of 4-cholesten-3-one and 1,4-androstadiene-3,17-dione, which are intermediates of microbial conversion of cholesterol, by cholesterol-degrading bacteria (12 strains of the genus Rhodococcus isolated from food of animal origin and 12 culture collection strains) were examined. All strains had the ability to degrade 4-cholesten-3-one without necessarily being able to degrade cholesterol. On the other hand, the bacteria were divided into three groups with little or no (0-10%), intermediate (10-70%) and high (70-100%) degradation abilities for 1,4-androstadiene-3,17-dione.  相似文献   

19.
Degradations of 4-cholesten-3-one and 1,4-androstadiene-3,17-dione, which are intermediates of microbial conversion of cholesterol, by cholesterol-degrading bacteria (12 strains of the genus Rhodococcus isolated from food of animal origin and 12 culture collection strains) were examined. All strains had the ability to degrade 4-cholesten-3-one without necessarily being able to degrade cholesterol. On the other hand, the bacteria were divided into three groups with little or no (0–10%), intermediate (10–70%) and high (70–100%) degradation abilities for 1,4-androstadiene-3,17-dione.  相似文献   

20.
9 alpha-Hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) is catalysed by 3-ketosteroid 9 alpha-hydroxylase (KSH), a key enzyme in microbial steroid catabolism. Very limited knowledge is presently available on the KSH enzyme. Here, we report for the first time the identification and molecular characterization of genes encoding KSH activity. The kshA and kshB genes, encoding KSH in Rhodococcus erythropolis strain SQ1, were cloned by functional complementation of mutant strains blocked in AD(D) 9 alpha-hydroxylation. Analysis of the deduced amino acid sequences of kshA and kshB showed that they contain domains typically conserved in class IA terminal oxygenases and class IA oxygenase reductases respectively. By definition, class IA oxygenases are made up of two components, thus classifying the KSH enzyme system in R. erythropolis strain SQ1 as a two-component class IA monooxygenase composed of KshA and KshB. Unmarked in frame gene deletion mutants of parent strain R. erythropolis SQ1, designated strains RG2 (kshA mutant) and RG4 (kshB mutant), were unable to grow on steroid substrates AD(D), whereas growth on 9 alpha-hydroxy-4-androstene-3,17-dione (9OHAD) was not affected. Incubation of these mutant strains with AD resulted in the accumulation of ADD (30-50% conversion), confirming the involvement of KshA and KshB in AD(D) 9 alpha-hydroxylation. Strain RG4 was also impaired in sterol degradation, suggesting a dual role for KshB in both sterol and steroid degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号