首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
125I]iodopindolol: a new beta adrenergic receptor probe   总被引:1,自引:0,他引:1  
When utilizing iodohydroxybenzylpindolol (IHYP) as an adrenergic receptor probe in muscle membrane systems, the data demonstrated an unacceptably high nonspecific binding component. Bearer et al. have reported that chloramine-T induced iodination of hydroxybenzylpindolol (HYP) results in the incorporation of iodine into the indole ring rather than into the phenolic moiety as noted previously by others. These results suggest that pindolol itself can also be iodinated. Therefore, the usefulness of carrier free 125I-labeled iodopindolol (IPIN) as an adrenergic receptor probe was investigated. Using between 0.01 nM and 0.1 nM [125I]IPIN in two different muscle membrane systems, we found the nonspecific binding component to be 10% or less of total binding. When [125I]IPIN was used with membranes prepared from rat skeletal muscle, we found it to interact with a single set of high affinity binding sites (KD = 0.13 +/- 0.01 nM) with the characteristics of beta adrenergic receptors and a density of 48.5 fmoles/mg protein. IPIN binding was also studied with purified dog cardiac sarcolemma. A single set of binding sites was detected having a KD of 1.64 +/- 0.5 nM; the density of these sites was 289 fmoles/mg membrane protein. [125I]IPIN may be a useful probe for the beta adrenergic receptor of tissues in which [125I]IHYP and other beta adrenergic receptor probes have a non-specific binding component which approaches that of the specific binding component.  相似文献   

2.
Gastrin-releasing peptide (GRP) receptors are present in pancreatic islets, though their regulation is unknown except for homologous desensitization. The modulation of binding of GRP to mouse pancreatic islets and INS-1 cells was studied. At 60 min (steady-state), total binding of [(125)I-Tyr(15)] GRP was 1.62 per cent of total radioactivity per 50 islets; non-specific binding (presence of 1 mM unlabelled GRP(1-27)) was 0.05 to 0.61 per cent of total radioactivity. A preincubation with 1000 nM cholecystokinin (CCK(8)) or with 1000 nM glucose-dependent insulinotropic peptide (GIP) augmented the number of GRP binding sites but not their affinity. [(125)I-Tyr(15)]GRP binding to INS-1 cells was saturable (90 min) and specific with respect to compounds that are not chemically related to GRP (e.g. calcitonin gene-regulated peptide-CGRP and atrial natriuretic peptide-ANP). Displacement studies showed one binding site with a K(d) of 0.39 nM and a B(max) of 13.2 fmoles mg(-1) protein. When the cells were pretreated for 24 h with 10 nM GIP or CCK(8), only GIP but not CCK(8) increased the B(max) of the GRP binding site. The affinity (K(d)) was not changed by either compound. This effect of GIP pretreatment was not affected by downregulating PKC by TPA (phorbol ester; long-term pretreatment). These data indicate that: (1) specific binding sites for GRP are present in mouse pancreatic islets and INS-1 cells; (2) the GRP binding is upregulated by GIP in both islets and INS-1 cells and additionally by CCK(8 ), albeit only in islets; and (3) PKC does not seem to be involved in the up-regulation process. Thus a positive interplay between both the incretins GIP and CCK(8) and the neurotransmitter GRP is obvious.  相似文献   

3.
[3H]Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that [3H]NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited [3H]NT binding with the following potencies (IC50): NT 8–13 (0.4 nM), NT 1–13 (4 nM), NT 9–13 (130 nM), NT 1–11, NT 1–8 (>100 μM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.  相似文献   

4.
Detergent solubilization of human neutrophil leukotriene B4 receptors   总被引:1,自引:0,他引:1  
Specific leukotriene B4 (LTB4) receptors in human neutrophils were solubilized by treatment of "receptor fraction" membranes with the zwitterionic detergent (3-[(3-cholamidopropyl)-dimethylammonio]1-propane sulfonate (CHAPS). The soluble receptors were assayed by polyethylene glycol (PEG) precipitation coupled with Millipore filtration. The solubilized receptors retained all of the characteristics of the receptor sites in intact neutrophils. The binding of LTB4 was rapid, reversible and stereospecific. Mathematical modeling analysis revealed biphasic binding of [3H] LTB4 indicating two classes of binding sites. The high affinity binding site had a dissociation constant of 1.93 nM and Bmax of 281 fmoles/mg protein; the low affinity binding site had a dissociation constant of 78.92 nM and Bmax of 2522 fmoles/mg protein. Competitive binding experiments with structural analogs of LTB4 demonstrate that the interaction between LTB4 and its binding site is stereospecific and correlates with the relative biological activity of the analogs. These data suggest that it may be possible to purify the LTB4 receptor from human neutrophil membranes.  相似文献   

5.
E V Parfenova 《Tsitologiia》1986,28(5):570-573
Two types of cytosol receptors of 3H-estradiol with high affinity and limited quantity of binding sites (KDI = 1-2 nM, BmaxI = 8 fmoles/mg protein; KDII = 10 nM, BmaxII = 8 fmoles/mg protein) were determined in the rat olfactory tissue. The amount of high affinity receptors of type I does not change with maturation of the rats, and has no sex difference. The role of estradiol receptors in the olfactory tissue of the rats is discussed.  相似文献   

6.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

7.
To identify insulin-like receptors in the mollusc Anodonta cygnea, specific binding of 125I-insulin and 125I-IGF-1 by WGA-purified glycoprotein fractions of foot muscles and neural ganglia is studied. The binding sites for IGF-1 are detected for the first time in invertebrates, both in the muscles, and in the neural tissue of the mollusc. The level of 125I-IGF-1 binding in the muscle tissue was equal to 2.8 ± 0.1, in the neural tissue, to 4.0 ± 0.2% per 5 µg of protein. The equilibrium dissociation constant (K d) was equal to 4.8 ± 0.3 and 4.3 ± 0.2 nM, respectively. The relative affinity of the binding sites to insulin did not exceed 1% of their affinity to IGF-1. Binding of 125I-insulin in the muscle tissue was not detected; the level of labeled insulin binding in the neural tissue was equal to 0.5% per 5 µg of protein. In the sarcolemmal fraction of the mollusc foot, IGF-1 and, to a lesser degree, insulin at a dose of 100 nM initiated phosphorylation of tyrosine in a protein with mol. mass of 70 kDa. The minor band of the phosphorylation was also detected in the zone of protein of 80 kDa. The conclusion is made about the existence in molluscan tissues of high-conserved receptors-tyrosine kinases identical by functional parameters to the mammalian receptor of IGF-1. From this, it is suggested that the peptides close by structure to vertebrate IGF-1 may be involved in physiological processes in A. cygnea. The problem of the nature of the insulin-binding sites in the molluscan neural tissue is discussed.  相似文献   

8.
Insulin is known to cause an increase in endothelin-1 (ET-1) receptors in vascular smooth muscle cells (SMCs), but the effect of insulin-like growth factor 1 (IGF-1) on ET-1 receptor expression is not known. We therefore carried out the present study to determine the effect of IGF-1 on the binding of ET-1 to, and ET type A receptor (ETAR) expression and ET-1-induced 3H-thymidine incorporation in, vascular SMCs. In serum-free medium, IGF-1 treatment increased the binding of 125I-ET-1 to SMC cell surface ET receptors from a specific binding of 20.1%+/-3.1% per mg of protein in control cells to 45.1%+/-8.6% per mg of protein in cells treated with IGF-1 (10 nM). The effect of IGF-1 was dose-related, with a significant effect (1.4-fold) being seen at 1 nM. The minimal time for IGF-1 treatment to be effective was 30 min and the maximal effect was reached at 6 h. Immunoblotting analysis showed that ETAR expression in IGF-1-treated cells was increased by 1.7-fold compared to controls. Levels of ETAR mRNA measured by the RT-PCR method and Northern blotting were also increased by 2-fold in IGF-1-treated SMCs. These effects of IGF-1 were abolished by cycloheximide or genistein. Finally, ET-1-stimulated thymidine uptake and cell proliferation were enhanced by IGF-1 treatment, with a maximal increase of 3.2-fold compared to controls. In conclusion, in vascular SMCs, IGF-1 increases the expression of the ET-1 receptor in a dose- and time-related manner. This effect is associated with increased thymidine uptake and involves tyrosine kinase activation and new protein synthesis. These findings support the role of IGF-1 in the development of atherosclerotic, hypertensive, and diabetic vascular complications.  相似文献   

9.
Mr2034 has been proposed as a kappa opiate. While Mr2034 inhibited the binding of the kappa opiate 3H-ethylketocyclazocine better than unlabeled ethylketocyclazocine, it also displaced the binding of 3H-dihydromorphine and 3H-SKF 10047 more potently than morphine and SKF 10047, respectively. 3H-D-ala2-D-leu5-enkephalin was displaced equally well by Mr2034 and D-ala2-D-leu5-enkephalin. Saturation studies of 3H-Mr2034 binding demonstrated curvilinear Scatchard plots which could be dissected into two components by computer: KD1 0.06 nM, Bmax1 2.49 fmoles/mg tissue; and KD2 2.4 nM, Bmax2 6.57 fmoles/mg tissue. A portion of the higher affinity (KD 0.06 nM) component was inhibited by naloxonazine treatment in vitro (50 nM), suggesting that 3H-Mr2034 bound with very high affinity to mu1 sites. Displacement of 3H-Mr2034 binding by opioids was multiphasic, again implying that 3H-Mr2034 was binding to more than one class, of site. In view of its similar potency in inhibiting mu (3H-dihydromorphine), kappa (3H-ethylketocycla-zocine), sigma (3H-SKF 10047) and delta (3H-D-ala2-D-leu5-enkephalin) opioids Mr2034 might be considered a universal opiate.  相似文献   

10.
Somatostatin binding sites have been demonstrated in the cytosolic fraction of guinea-pig lung. Binding of 125I-Tyr11-somatostatin was dependent on time and temperature, saturable, reversible and highly specific. Under equilibrium condition, i.e. 60 min at 25 degrees C, native somatostatin inhibited tracer binding in a dose-dependent manner. Two types of somatostatin binding sites were defined by Scatchard analysis: a small population with a high affinity (Kd = 23.4 nM) and a large population with a low affinity (Kd = 253.5 nM) for somatostatin. The biphasic nature of the dissociation process confirmed the heterogeneity of somatostatin binding sites. Apart from somatostatin, no peptide (1 microM) tested influenced the binding of 125I-Tyr11-somatostatin. The present data represent the first analysis of somatostatin binding sites in lung.  相似文献   

11.
The binding sites of dendrotoxin I, mast cell degranulating peptide, and beta-bungarotoxin are thought to be associated with neuronal K+ channels. The different binding sites seem to reside on the same molecular assembly as each toxin can allosterically inhibit the binding of the others. Affinity chromatography on a beta-BTX Aca 22 affinity column has shown that there is an heterogeneous population of dendrotoxin I binding proteins. Two subtypes were separated: DTXI binding proteins with low affinity for beta-BTX (60-70% of total) and DTXI binding proteins with high affinity for beta-BTX (30-40% of total). Binding of 125I-DTXI and 125I-MCD to the former subtype is inhibited by beta-BTX with a low affinity (IC50 = 560 nM), while inhibition at the latter subtype occurs with a high affinity (IC50 = 10-16 nM). The DTXI binding subtype with low affinity for beta-BTX contains most (85-90%) of the binding sites for 125I-MCD.  相似文献   

12.
The zwitterionic detergent CHAPS was used to solubilize functional receptors for vasoactive intestinal peptide (VIP) from guinea pig lung. The solubilized receptors were resolved by high performance gel filtration in 3 mM CHAPS into two active fractions with apparent Stokes radii of 5.9 +/- 0.1 and 2.3 +/- 0.1 nm. The binding of 125I-VIP to the two receptor fractions was time-dependent, reversible, and saturable. Trypsin destroyed the binding activity of the receptor fractions, indicating their proteinic nature. Unlabeled VIP competitively displaced the binding of 125I-VIP to the 5.9-nm fraction (IC50 = 240 pM) and the 2.3-nm fraction (IC50 = 1.2 microM). Scatchard analysis indicated a single class of binding sites in each receptor fraction, with Kd values 300 pM and 0.97 microM for the 5.9- and 2.3-nm Stokes radii fractions, respectively. When the high affinity, 5.9-nm Stokes radius fraction was rechromatographed in 9 nM CHAPS, 46% of the binding activity eluted in the low affinity, 2.3-nm Stokes radius fraction, indicating that the latter is a product of dissociation of the high affinity receptor complex. GTP inhibited the binding of 125I-VIP to the high affinity complex but not the low affinity species. Scatchard plots of VIP binding by the high affinity receptors treated with GTP suggested the presence of two distinct binding sites (Kd 4.4 and 153 nM), compared to a single binding site (Kd = 0.3 nM) obtained in untreated receptors. The nonhydrolyzable GTP analog, guanyl-5'-yl-imidodiphosphate, inhibited VIP binding by the high affinity receptor fraction with potency nearly equivalent to that of GTP. These observations suggest that GTP-binding regulatory proteins are functionally coupled to the VIP-binding subunit in the high affinity receptor complex. The peptide specificity characteristics of the two receptor fractions were different. Peptide histidine isoleucine and growth hormone releasing factor, peptides homologous to VIP, were 87.5- and 22.9-fold less potent than VIP in displacing 125I-VIP binding by the high affinity receptor complex, respectively. On the other hand, growth hormone-releasing factor was more potent (22.7-fold) and peptide histidine isoleucine was less potent (31.3-fold) than VIP in displacing the binding by the low affinity species.  相似文献   

13.
The binding of [125I]-recombinant basic FGF (rec bFGF) to rat hepatic plasma membranes was investigated. [125I] rec bFGF bound to an apparent single class of high affinity binding sites (KD = 69 pM; Bmax = 9.61 fmoles/mg proteins). The absence of low affinity sites was confirmed by the inability of sulphated polysaccharides and heparinase to interfere with FGF binding. A good correlation existed between the ability of bovine pituitary-derived bFGF, rec bFGF and bovine brain-derived aFGF to displace [125I]rec bFGF from these binding sites and their in vitro potency on bovine aortic endothelial cell proliferation.  相似文献   

14.
[125I]17alpha-hydroxy-20alpha-yohimban-16beta-(N-4-p6 hydroxyphenethyl)carboxamide or [125I]rauwolscine-OHPC, a new radioiodinated probe derived from rauwolscine was synthesized and its binding characteristics investigated on sections of the mouse caudate putamen. [125I]rauwolscine-OHPC binding was saturable and revealed interaction with a single class of binding sites (KD= 0.171 nM, Bmax = 3082 pCi/mg of tissue). The kinetically derived affinity was in close agreement with the affinity evaluated by saturation experiments: k(-1)/k(+1)(0.0403 min(-1)/114 10(6) M(-1) min(-1))=0.35 nM. Competition studies revealed interaction with one single class of binding sites for each of the twelve compounds tested. The rank of potency suggested an interaction with alpha2 adrenoceptors (atipamezole > or = RX 821002 > yohimbine > (-)epinephrine). Moreover, the good affinity of [125I] rauwolscine-OHPC binding sites for spiroxatrine, yohimbine, WB 4101, the relatively good affinity for prazosin (Ki =37.4 nM) and the affinity ratio prazosin/oxymetazoline (37.4/43.4=0.86) were consistent with an alpha2C selective labelling of [125I]rauwolscine-OHPC. The distribution of [125I]rauwolscine-OHPC binding sites in mouse brain was characterized by autoradiography. The density of binding sites was high in the islands of Calleja, accumbens nucleus, caudate putamen and olfactory tubercles, moderate in the hippocampus, amygdala and anterodorsal nucleus of the thalamus. These findings demonstrated that [125I]rauwolscine-OHPC is a useful radioiodinated probe to label alpha2C adrenoceptors in mouse brain.  相似文献   

15.
Relationship among types of nerve growth factor receptors on PC12 cells   总被引:3,自引:0,他引:3  
We analyzed the kinetics and thermodynamics of 125I-nerve growth factor (125I-NGF) binding to NGF-receptor on PC12 cells. We used conditions of pseudo-first order kinetics and techniques to quantitate internalized complexes, "slow" or high affinity binding complexes, and cell surface "fast" or low affinity complexes. Two possible models were examined: binding to two independent receptors at the cell surface (i.e. high and low affinity forms of NGF-receptor) and a model for consecutive formation of fast, low affinity binding followed by slow, high affinity binding or internalization. Our data are consistent with the consecutive model only. The rates of association and dissociation of NGF with slow, high affinity sites and internalized, acid wash-resistant sites are indistinguishable from each other. We also analyzed, in detail, the two assays primarily used to distinguish slow binding complexes from internalized complexes. Scatchard analysis of total binding and dissociation of pre-equilibrated 125I-NGF in the presence of unlabeled NGF at high concentration (cold wash). Neither of these assays shows any evidence that the slow, high affinity binding step is different from internalization of the 125I-NGF-receptor complex. Based on this analysis, there are only two detectable forms of NGF-receptor on PC12 cells: complexes on the surface of the cells with a binding affinity of 0.5 nM at 37 degrees C and complexes internalized by the cells. Furthermore, the data are consistent with a model in which NGF-receptor is internalized constitutively and independently of occupancy by NGF. We also examined the fate of internalized 125I-NGF. In the first 60 min after contact with PC12 cells, no degradation of 125I-NGF was observed. Moreover, a significant amount of 125I-NGF recirculates to the cell surface and is released as intact, Mr = 13,000 NGF. The cells were also stimulated by NGF in a primary neurite outgrowth assay with an ED50 of 2-16 pM under conditions of low initial cell numbers in a large extracellular volume of NGF-containing medium. Thus, low level occupancy of the cell surface receptors, Kd = 0.5 nM, for several days is sufficient to stimulate neurite outgrowth. This indicates the presence of spare NGF-receptors on the surface PC12 cells.  相似文献   

16.
Tetanus toxin (about 1 nM) inhibits 70% of the nicotine-evoked release of catecholamines from intact adrenal medullary chromaffin cells after 20 h of incubation and 30% of the K(+)-evoked release. Inhibition of Ca(2+)-evoked release from detergent-permeabilized cells requires higher concentrations of toxin (about 1 microM) toxin, but is maximal after 12 min. Preincubation of the intact cells with ganglioside GT1 in the absence of toxin also inhibits evoked secretion. 125I-labelled toxin bound specifically to these cells; the binding capacity was greater at pH 6 (about 1 pmol toxin/mg cell protein) than at pH 7.4 (about 0.25 pmol). In both cases there were at least two binding components: one of high affinity (Kd about 1 nM) accounting for about 20% of total binding and one of lower affinity (Kd 10-20 nM). Preincubation of the cells with ganglioside increased the binding capacity, but did not affect the Kd of the lower affinity component. Similar observations could be made when binding was measured immunocytochemically. Extraction of gangliosides from chromaffin cells and overlay experiments with radiolabelled toxin showed that, as well as GM3, the major ganglioside component of chromaffin cell membranes, a ganglioside having the chromatographic mobility of GT1 was a major ligand for toxin.  相似文献   

17.
The interaction of 125I-asialoerythropoietin (asialoepo) with receptors has been characterized both by binding assay and affinity cross-linking. Purified spleen cells from mice infected with the anemia strain of Friend virus (FVA cells) have receptors for 125I-asialoepo with two classes of affinity constant: one with Kd = 0.02-0.03 nM and 300-400 per cell, the other with lower affinity (Kd = 0.9-1.2 nM) and 1,000-1,200 per cell. The Kd value for the high affinity site is one-third of that for the binding of native 125I-erythropoietin (125I-epo) to the same FVA cells (Kd = 0.08-0.1 nM). Using 125I-asialoepo or 125I-epo affinity cross-linking methods, we find two components with apparent molecular weights of 88 kDa and 105 kDa in FVA cells, and in the transformed mouse cell lines, 201, IW32, and NN10, in agreement with earlier studies using 125I-epo. These results indicate that 125I-asialoepo binds to the same receptors as 125I-epo, but with greater affinity for the high affinity site. Since 201 cells contain only a single class of lower affinity receptors for erythropoietin (epo), finding the same two components as found for FVA cells by cross-linking experiment indicates that the two components do not represent the two classes of receptor.  相似文献   

18.
The binding of [3H]-bumetanide to rat brain synaptosomes revealed the existence of two binding sites. The high affinity site (R1 = 46.6 fmoles/mg protein) binds bumetanide and furosemide with Kd1 of 13 nM and 1.5 microM respectively, while the low affinity site (R2 = 1.37 nmoles/mg protein) is characterized by Kd2 of 200 microM and 680 microM for bumetanide and furosemide, respectively. Bumetanide sensitive 86Rb uptake was 34 +/- 14.5, 38.3 +/- 1.4, 18.6 +/- 1.3 and 29.0 +/- 6.1% of total 86Rb uptake in synaptic plasma membrane vesicles, rat brain synaptosomes, Neuroblastoma N1E115 cell line and chick chest muscle cells, respectively. Furosemide and bumetanide inhibited 86Rb uptake to rat brain SPM- vesicles in a dose dependent fashion. Half maximal inhibition (IC50) was observed at 20 nM and 4 microM for bumetanide and furosemide, respectively. Bumetanide-sensitive transport was dependent on extravesicular sodium and chloride concentrations with a Km of 21 and 25 mM for the two ions, respectively. These results demonstrate the existence of a "loop diuretic" sensitive carrier-mediated K+ transport system in brain and other excitable cells.  相似文献   

19.
Agonist-induced changes in beta-adrenergic receptors on intact cells   总被引:3,自引:0,他引:3  
Competition by beta-adrenergic agonists and antagonists for 125I-pindolol binding sites on intact cells (1321N1 human astrocytoma and C62B rat glioma) was measured using short time binding assays as previously described (Toews, M. L., Harden, T. K., and Perkins, J. P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3553-3557). Preincubation of cells with agonists converted about half of the cellular beta-adrenergic receptors from a form exhibiting high affinity for the agonists isoproterenol and epinephrine and the antagonist sotalol to a form exhibiting much lower apparent affinity for these ligands in short time assays. Exposure to agonists did not alter the affinity of receptors for the antagonist metoprolol. This change in the ligand binding properties of the receptor was rapid (t1/2 = 1-2 min following a lag of about 0.5 min), reversible (t1/2 = 6-8 min), and dependent on the agonist concentration present during the preincubation (K0.5 = 15 nM for isoproterenol). Both isoproterenol and sotalol attained equilibrium with the high affinity receptors very rapidly but equilibrated only slowly with those receptors exhibiting low apparent affinity in short time assays. These results are interpreted in terms of a model which postulates that both the low apparent affinity in short time assays and the subsequent slow equilibration of hydrophilic ligands with these receptors result from agonist-induced internalization of a fraction of cell surface beta-adrenergic receptors. The relationship of this change in receptor binding properties to other aspects of agonist-induced desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system is discussed.  相似文献   

20.
An expression plasmid encoding the human 75-kDa tumor necrosis factor (TNF) type 2 receptor (TNF-R2) was constructed and used to generate a stable human cell line (293/TNF-R2) overexpressing TNF-R2. Ligand binding analysis revealed high affinity binding (Kd = 0.2 nM) with approximately 94,000 +/- 7,500 sites/cell for 125I-TNF-alpha and approximately 5-fold lower affinity for TNF-beta (Kd = 1.1 nM) with 264,000 +/- 2,000 sites/cell. Cross-linking of 125I-TNF-alpha and 125I-TNF-beta to 293/TNF-R2 cells yielded predominant complexes with apparent molecular weights of 211,000 for TNF-alpha and 205,000 and 244,000 for TNF-beta, suggesting these complexes contain two or three TNF-R2 molecules. Immunoprecipitation of TNF-R2 from 32P-labeled 293/TNF-R2 cells demonstrated that the receptor is phosphorylated. The majority (97%) of 32Pi incorporation was found in serine residues with a very low level of incorporation (3%) in threonine residues. TNF-alpha treatment of 293/TNF-R2 cells did not significantly affect the degree or pattern of phosphorylation. Cell surface-bound 125I-TNF-alpha was slowly internalized by the 293/TNF-R2 cell line with a t1/2 = 25 min. Shedding of the extracellular domain of TNF-R2 was induced by 4 beta-phorbol 12-myristate 13-acetate but not by TNF-alpha or TNF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号